Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -894,79 +894,79 @@ with ui.navset_card_tab(id="tab"):
|
|
894 |
# with ui.nav_panel("Viral Model"):
|
895 |
# gr.load("models/Hack90/virus_pythia_31_1024").launch()
|
896 |
|
897 |
-
with ui.nav_panel("Viral Microstructure"):
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
|
912 |
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
with ui.nav_panel("Viral Model Training"):
|
940 |
-
|
941 |
-
|
942 |
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
|
971 |
|
972 |
# @render.image
|
|
|
894 |
# with ui.nav_panel("Viral Model"):
|
895 |
# gr.load("models/Hack90/virus_pythia_31_1024").launch()
|
896 |
|
897 |
+
# with ui.nav_panel("Viral Microstructure"):
|
898 |
+
# ui.page_opts(fillable=True)
|
899 |
+
# ui.panel_title("Kmer Distribution")
|
900 |
+
# with ui.layout_columns():
|
901 |
+
# with ui.card():
|
902 |
+
# ui.input_slider("kmer", "kmer", 0, 10, 5)
|
903 |
+
# ui.input_slider("top_k", "top:", 0, 1000, 15)
|
904 |
|
905 |
+
# ui.input_selectize(
|
906 |
+
# "plot_type",
|
907 |
+
# "Select metric:",
|
908 |
+
# ["percentage", "count"],
|
909 |
+
# multiple=False,
|
910 |
+
# )
|
911 |
|
912 |
|
913 |
+
# @render.plot
|
914 |
+
# def plot():
|
915 |
+
# df = pd.read_csv('kmers.csv')
|
916 |
+
# k = input.kmer()
|
917 |
+
# top_k = input.top_k()
|
918 |
+
# fig = None
|
919 |
+
# if input.plot_type() == "count":
|
920 |
+
# df = df[df['k'] == k]
|
921 |
+
# df = df.head(top_k)
|
922 |
+
# fig, ax = plt.subplots()
|
923 |
+
# ax.bar(df['kmer'], df['count'])
|
924 |
+
# ax.set_title(f"Most common {k}-mers")
|
925 |
+
# ax.set_xlabel("K-mer")
|
926 |
+
# ax.set_ylabel("Count")
|
927 |
+
# ax.set_xticklabels(df['kmer'], rotation=90)
|
928 |
+
# if input.plot_type() == "percentage":
|
929 |
+
# df = df[df['k'] == k]
|
930 |
+
# df = df.head(top_k)
|
931 |
+
# fig, ax = plt.subplots()
|
932 |
+
# ax.bar(df['kmer'], df['percent']*100)
|
933 |
+
# ax.set_title(f"Most common {k}-mers")
|
934 |
+
# ax.set_xlabel("K-mer")
|
935 |
+
# ax.set_ylabel("Percentage")
|
936 |
+
# ax.set_xticklabels(df['kmer'], rotation=90)
|
937 |
+
# return fig
|
938 |
+
|
939 |
+
# with ui.nav_panel("Viral Model Training"):
|
940 |
+
# ui.page_opts(fillable=True)
|
941 |
+
# ui.panel_title("Does context size matter for a nucleotide model?")
|
942 |
|
943 |
+
# def plot_loss_rates(df, type):
|
944 |
+
# # interplot each column to be same number of points
|
945 |
+
# x = np.linspace(0, 1, 1000)
|
946 |
+
# loss_rates = []
|
947 |
+
# labels = ['32', '64', '128', '256', '512', '1024']
|
948 |
+
# #drop the column step
|
949 |
+
# df = df.drop(columns=['Step'])
|
950 |
+
# for col in df.columns:
|
951 |
+
# y = df[col].dropna().astype('float', errors = 'ignore').dropna().values
|
952 |
+
# f = interp1d(np.linspace(0, 1, len(y)), y)
|
953 |
+
# loss_rates.append(f(x))
|
954 |
+
# fig, ax = plt.subplots()
|
955 |
+
# for i, loss_rate in enumerate(loss_rates):
|
956 |
+
# ax.plot(x, loss_rate, label=labels[i])
|
957 |
+
# ax.legend()
|
958 |
+
# ax.set_title(f'Loss rates for a {type} parameter model')
|
959 |
+
# ax.set_xlabel('Training steps')
|
960 |
+
# ax.set_ylabel('Loss rate')
|
961 |
+
# return fig
|
962 |
|
963 |
+
# @render.plot
|
964 |
+
# def plot():
|
965 |
+
# fig = None
|
966 |
+
# df = pd.read_csv('14m.csv')
|
967 |
+
# mpl.rcParams.update(mpl.rcParamsDefault)
|
968 |
+
# fig = plot_loss_rates(df, '14M')
|
969 |
+
# return fig
|
970 |
|
971 |
|
972 |
# @render.image
|