Spaces:
Sleeping
Sleeping
File size: 11,072 Bytes
843bd97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# DINOv2: Learning Robust Visual Features without Supervision
**[Meta AI Research, FAIR](https://ai.facebook.com/research/)**
Maxime Oquab,
Timothée Darcet,
Théo Moutakanni,
Huy V. Vo,
Marc Szafraniec,
Vasil Khalidov,
Patrick Labatut,
Armand Joulin,
Piotr Bojanowski
[[`Paper`](https://arxiv.org/abs/2304.07193)] [[`Blog`](https://ai.facebook.com/blog/dino-v2-computer-vision-self-supervised-learning/)] [[`Demo`](https://dinov2.metademolab.com)] [[`BibTeX`](#citing-dinov2)]
PyTorch implementation and pretrained models for DINOv2. For details, see the paper: **[DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)**.
DINOv2 models produce high-performance visual features that can be directly employed with classifiers as simple as linear layers on a variety of computer vision tasks; these visual features are robust and perform well across domains without any requirement for fine-tuning. The models were pretrained on a dataset of 142 M images without using any labels or annotations.
https://github.com/facebookresearch/dinov2/assets/60359573/f168823e-7922-415a-b429-578badf5c356
<div align="center">
Visualization of the three first principal components of the patch features of all frames, mapped to RGB values.
</div>
## Pretrained models
<table style="margin: auto">
<tr>
<th>model</th>
<th># of<br />params</th>
<th>ImageNet<br />k-NN</th>
<th>ImageNet<br />linear</th>
<th>download</th>
</tr>
<tr>
<td>ViT-S/14 distilled</td>
<td align="right">21 M</td>
<td align="right">79.0%</td>
<td align="right">81.1%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_pretrain.pth">backbone only</a></td>
</tr>
<tr>
<td>ViT-B/14 distilled</td>
<td align="right">86 M</td>
<td align="right">82.1%</td>
<td align="right">84.5%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth">backbone only</a></td>
</tr>
<tr>
<td>ViT-L/14 distilled</td>
<td align="right">300 M</td>
<td align="right">83.5%</td>
<td align="right">86.3%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth">backbone only</a></td>
</tr>
<tr>
<td>ViT-g/14</td>
<td align="right">1,100 M</td>
<td align="right">83.5%</td>
<td align="right">86.5%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth">backbone only</a></td>
</tr>
</table>
### Pretrained models via PyTorch Hub
Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install PyTorch (the only required dependency for loading the model). Installing PyTorch with CUDA support is strongly recommended.
A corresponding [model card](MODEL_CARD.md) is included in the repository.
```python
import torch
dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
dinov2_vitb14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14')
```
## Installation
The training and evaluation code requires PyTorch 2.0 and [xFormers](https://github.com/facebookresearch/xformers) 0.0.18 as well as a number of other 3rd party packages. Note that the code has only been tested with the specified versions and also expects a Linux environment. To setup all the required dependencies for training and evaluation, please follow the instructions below:
*[conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html)* **(Recommended)** - Clone the repository and then create and activate a `dinov2` conda environment using the provided environment definition:
```shell
conda env create -f conda.yaml
conda activate dinov2
```
*[pip](https://pip.pypa.io/en/stable/getting-started/)* - Clone the repository and then use the provided `requirements.txt` to install the dependencies:
```shell
pip install -r requirements.txt
```
## Data preparation
### ImageNet-1k
The root directory of the dataset should hold the following contents:
- `<ROOT>/test/ILSVRC2012_test_00000001.JPEG`
- `<ROOT>/test/[..]`
- `<ROOT>/test/ILSVRC2012_test_00100000.JPEG`
- `<ROOT>/train/n01440764/n01440764_10026.JPEG`
- `<ROOT>/train/[...]`
- `<ROOT>/train/n15075141/n15075141_9993.JPEG`
- `<ROOT>/val/n01440764/ILSVRC2012_val_00000293.JPEG`
- `<ROOT>/val/[...]`
- `<ROOT>/val/n15075141/ILSVRC2012_val_00049174.JPEG`
- `<ROOT>/labels.txt`
The provided dataset implementation expects a few additional metadata files to be present under the extra directory:
- `<EXTRA>/class-ids-TRAIN.npy`
- `<EXTRA>/class-ids-VAL.npy`
- `<EXTRA>/class-names-TRAIN.npy`
- `<EXTRA>/class-names-VAL.npy`
- `<EXTRA>/entries-TEST.npy`
- `<EXTRA>/entries-TRAIN.npy`
- `<EXTRA>/entries-VAL.npy`
These metadata files can be generated (once) with the following lines of Python code:
```python
from dinov2.data.datasets import ImageNet
for split in ImageNet.Split:
dataset = ImageNet(split=split, root="<ROOT>", extra="<EXTRA>")
dataset.dump_extra()
```
Note that the root and extra directories do not have to be distinct directories.
### ImageNet-22k
Please adapt the [dataset class](dinov2/data/datasets/image_net_22k.py) to match your local setup.
<br />
:warning: To execute the commands provided in the next sections for training and evaluation, the `dinov2` package should be included in the Python module search path, i.e. simply prefix the command to run with `PYTHONPATH=.`.
## Training
### Fast setup: training DINOv2 ViT-L/16 on ImageNet-1k
Run DINOv2 training on 4 A100-80GB nodes (32 GPUs) in a SLURM cluster environment with submitit:
```shell
python dinov2/run/train/train.py \
--nodes 4 \
--config-file dinov2/configs/train/vitl16_short.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
train.dataset_path=ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
Training time is approximately 1 day and the resulting checkpoint should reach 81.6% on k-NN eval and 82.9% on linear eval.
The training code saves the weights of the teacher in the `eval` folder every 12500 iterations for evaluation.
### Long setup: training DINOv2 ViT-L/14 on ImageNet-22k
Run DINOv2 training on 12 A100-80GB nodes (96 GPUs) in a SLURM cluster environment with submitit:
```shell
python dinov2/run/train/train.py \
--nodes 12 \
--config-file dinov2/configs/train/vitl14.yaml \
--output-dir <PATH/TO/OUTPUT/DIR> \
train.dataset_path=ImageNet22k:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
Training time is approximately 3.3 days and the resulting checkpoint should reach 82.0% on k-NN eval and 84.5% on linear eval.
The training code saves the weights of the teacher in the `eval` folder every 12500 iterations for evaluation.
## Evaluation
The training code regularly saves the teacher weights. In order to evaluate the model, run the following evaluation on a single node:
### k-NN classification on ImageNet-1k
```shell
python dinov2/run/eval/knn.py \
--config-file <PATH/TO/OUTPUT/DIR>/config.yaml \
--pretrained-weights <PATH/TO/OUTPUT/DIR>/eval/training_24999/teacher_checkpoint.pth \
--output-dir <PATH/TO/OUTPUT/DIR>/eval/training_24999/knn \
--train-dataset ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
--val-dataset ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
### Logistic regression classification on ImageNet-1k
```shell
python dinov2/run/eval/log_regression.py \
--config-file <PATH/TO/OUTPUT/DIR>/config.yaml \
--pretrained-weights <PATH/TO/OUTPUT/DIR>/eval/training_24999/teacher_checkpoint.pth \
--output-dir <PATH/TO/OUTPUT/DIR>/eval/training_24999/logreg \
--train-dataset ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
--val-dataset ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
### Linear classification with data augmentation on ImageNet-1k
```shell
python dinov2/run/eval/linear.py \
--config-file <PATH/TO/OUTPUT/DIR>/config.yaml \
--pretrained-weights <PATH/TO/OUTPUT/DIR>/eval/training_24999/teacher_checkpoint.pth \
--output-dir <PATH/TO/OUTPUT/DIR>/eval/training_24999/linear \
--train-dataset ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
--val-dataset ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
We release the weights from evaluating the different models:
<table style="margin: auto">
<tr>
<th>model</th>
<th>ImageNet<br />top-1</th>
<th>linear evaluation</th>
</tr>
<tr>
<td>ViT-S/14 distilled</td>
<td align="right">81.1%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_linear_head.pth">linear head weights</a></td>
</tr>
<tr>
<td>ViT-B/14 distilled</td>
<td align="right">84.5%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_linear_head.pth">linear head weights</a></td>
</tr>
<tr>
<td>ViT-L/14 distilled</td>
<td align="right">86.3%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_linear_head.pth">linear head weights</a></td>
</tr>
<tr>
<td>ViT-g/14</td>
<td align="right">86.5%</td>
<td><a href="https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_linear_head.pth">linear head weights</a></td>
</tr>
</table>
The performance of the provided pretrained model weights can be evaluated as follows on ImageNet-1k:
```shell
python dinov2/run/eval/linear.py \
--config-file dinov2/configs/eval/vitg14_pretrain.yaml \
--pretrained-weights https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth \
--train-dataset ImageNet:split=TRAIN:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET> \
--val-dataset ImageNet:split=VAL:root=<PATH/TO/DATASET>:extra=<PATH/TO/DATASET>
```
## License
DINOv2 code and model weights are released under the CC-BY-NC 4.0 license. See [LICENSE](LICENSE) for additional details.
## Contributing
See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md).
## Citing DINOv2
If you find this repository useful, please consider giving a star :star: and citation :t-rex::
```
@misc{oquab2023dinov2,
title={DINOv2: Learning Robust Visual Features without Supervision},
author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy V. and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr},
journal={arXiv:2304.07193},
year={2023}
}
```
|