Spaces:
Sleeping
Sleeping
import torch | |
def discriminator_loss(generator, discriminator, mol_graph, batch_size, device, grad_pen, lambda_gp, z_edge, z_node): | |
# Compute loss with real molecules. | |
logits_real_disc = discriminator(mol_graph) | |
prediction_real = - torch.mean(logits_real_disc) | |
# Compute loss with fake molecules. | |
node, edge, node_sample, edge_sample = generator(z_edge, z_node) | |
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) | |
logits_fake_disc = discriminator(graph.detach()) | |
prediction_fake = torch.mean(logits_fake_disc) | |
# Compute gradient loss. | |
eps = torch.rand(mol_graph.size(0),1).to(device) | |
x_int0 = (eps * mol_graph + (1. - eps) * graph).requires_grad_(True) | |
grad0 = discriminator(x_int0) | |
d_loss_gp = grad_pen(grad0, x_int0) | |
# Calculate total loss | |
d_loss = prediction_fake + prediction_real + d_loss_gp * lambda_gp | |
return node, edge, d_loss | |
def generator_loss(generator, discriminator, adj, annot, batch_size): | |
# Compute loss with fake molecules. | |
node, edge, node_sample, edge_sample = generator(adj, annot) | |
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1) | |
logits_fake_disc = discriminator(graph) | |
prediction_fake = - torch.mean(logits_fake_disc) | |
g_loss = prediction_fake | |
return g_loss, node, edge, node_sample, edge_sample | |