Spaces:
Sleeping
Sleeping
File size: 15,359 Bytes
8279c69 685597b 8279c69 4e04e76 8279c69 4e04e76 8279c69 685597b 8279c69 4e04e76 8279c69 4e04e76 8279c69 4e04e76 8279c69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
from statistics import mean
import os
import math
import time
import datetime
from rdkit import DataStructs
from rdkit import Chem
from rdkit import RDLogger
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
from rdkit.Chem.Scaffolds import MurckoScaffold
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import torch
#import wandb
RDLogger.DisableLog('rdApp.*')
import warnings
from multiprocessing import Pool
class Metrics(object):
@staticmethod
def valid(x):
return x is not None and Chem.MolToSmiles(x) != ''
@staticmethod
def tanimoto_sim_1v2(data1, data2):
min_len = data1.size if data1.size > data2.size else data2
sims = []
for i in range(min_len):
sim = DataStructs.FingerprintSimilarity(data1[i], data2[i])
sims.append(sim)
mean_sim = mean(sim)
return mean_sim
@staticmethod
def mol_length(x):
if x is not None:
return len([char for char in max(x.split(sep =".")).upper() if char.isalpha()])
else:
return 0
@staticmethod
def max_component(data, max_len):
# There will be a name change for this function to better reflect what it does
"""Returns the average length of the molecules in the dataset normalized by the maximum length.
Returns:
array: normalized average length of the molecules in the dataset
"""
return ((np.array(list(map(Metrics.mol_length, data)), dtype=np.float32)/max_len).mean())
@staticmethod
def mean_atom_type(data):
atom_types_used = []
for i in data:
atom_types_used.append(len(i.unique().tolist()))
av_type = np.mean(atom_types_used) - 1
return av_type
def sim_reward(mol_gen, fps_r):
gen_scaf = []
for x in mol_gen:
if x is not None:
try:
gen_scaf.append(MurckoScaffold.GetScaffoldForMol(x))
except:
pass
if len(gen_scaf) == 0:
rew = 1
else:
fps = [Chem.RDKFingerprint(x) for x in gen_scaf]
fps = np.array(fps)
fps_r = np.array(fps_r)
rew = average_agg_tanimoto(fps_r,fps)
if math.isnan(rew):
rew = 1
return rew ## change this to penalty
##########################################
##########################################
##########################################
def mols2grid_image(mols,path):
mols = [e if e is not None else Chem.RWMol() for e in mols]
for i in range(len(mols)):
if Metrics.valid(mols[i]):
AllChem.Compute2DCoords(mols[i])
Draw.MolToFile(mols[i], os.path.join(path,"{}.png".format(i+1)), size=(1200,1200))
#wandb.save(os.path.join(path,"{}.png".format(i+1)))
else:
continue
def save_smiles_matrices(mols,edges_hard, nodes_hard, path, data_source = None):
mols = [e if e is not None else Chem.RWMol() for e in mols]
for i in range(len(mols)):
if Metrics.valid(mols[i]):
save_path = os.path.join(path,"{}.txt".format(i+1))
with open(save_path, "a") as f:
np.savetxt(f, edges_hard[i].cpu().numpy(), header="edge matrix:\n",fmt='%1.2f')
f.write("\n")
np.savetxt(f, nodes_hard[i].cpu().numpy(), header="node matrix:\n", footer="\nsmiles:",fmt='%1.2f')
f.write("\n")
#f.write(m0)
f.write("\n")
print(Chem.MolToSmiles(mols[i]), file=open(save_path,"a"))
#wandb.save(save_path)
else:
continue
##########################################
##########################################
##########################################
def dense_to_sparse_with_attr(adj):
assert adj.dim() >= 2 and adj.dim() <= 3
assert adj.size(-1) == adj.size(-2)
index = adj.nonzero(as_tuple=True)
edge_attr = adj[index]
if len(index) == 3:
batch = index[0] * adj.size(-1)
index = (batch + index[1], batch + index[2])
#index = torch.stack(index, dim=0)
return index, edge_attr
def label2onehot(labels, dim, device):
"""Convert label indices to one-hot vectors."""
out = torch.zeros(list(labels.size())+[dim]).to(device)
out.scatter_(len(out.size())-1,labels.unsqueeze(-1),1.)
return out.float()
def mol_sample(sample_directory, edges, nodes, idx, i,matrices2mol, dataset_name):
sample_path = os.path.join(sample_directory,"{}_{}-epoch_iteration".format(idx+1, i+1))
g_edges_hat_sample = torch.max(edges, -1)[1]
g_nodes_hat_sample = torch.max(nodes , -1)[1]
mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=dataset_name)
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
if not os.path.exists(sample_path):
os.makedirs(sample_path)
mols2grid_image(mol,sample_path)
save_smiles_matrices(mol,g_edges_hat_sample.detach(), g_nodes_hat_sample.detach(), sample_path)
if len(os.listdir(sample_path)) == 0:
os.rmdir(sample_path)
print("Valid molecules are saved.")
print("Valid matrices and smiles are saved")
def logging(log_path, start_time, i, idx, loss, save_path, drug_smiles, edge, node,
matrices2mol, dataset_name, real_adj, real_annot, drug_vecs):
g_edges_hat_sample = torch.max(edge, -1)[1]
g_nodes_hat_sample = torch.max(node , -1)[1]
a_tensor_sample = torch.max(real_adj, -1)[1].float()
x_tensor_sample = torch.max(real_annot, -1)[1].float()
mols = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=dataset_name)
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
real_mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=dataset_name)
for e_, n_ in zip(a_tensor_sample, x_tensor_sample)]
atom_types_average = Metrics.mean_atom_type(g_nodes_hat_sample)
real_smiles = [Chem.MolToSmiles(x) for x in real_mol if x is not None]
gen_smiles = []
uniq_smiles = []
for line in mols:
if line is not None:
gen_smiles.append(Chem.MolToSmiles(line))
uniq_smiles.append(Chem.MolToSmiles(line))
elif line is None:
gen_smiles.append(None)
gen_smiles_saves = [None if x is None else max(x.split('.'), key=len) for x in gen_smiles]
uniq_smiles_saves = [None if x is None else max(x.split('.'), key=len) for x in uniq_smiles]
sample_save_dir = os.path.join(save_path, "samples.txt")
with open(sample_save_dir, "a") as f:
for idxs in range(len(gen_smiles_saves)):
if gen_smiles_saves[idxs] is not None:
f.write(gen_smiles_saves[idxs])
f.write("\n")
k = len(set(uniq_smiles_saves) - {None})
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Epoch/Iteration [{}/{}]".format(et, idx, i+1)
gen_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in mols if x is not None]
chembl_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in real_mol if x is not None]
# Log update
#m0 = get_all_metrics(gen = gen_smiles, train = train_smiles, batch_size=batch_size, k = valid_mol_num, device=self.device)
valid = fraction_valid(gen_smiles_saves)
unique = fraction_unique(uniq_smiles_saves, k, check_validity=False)
novel_starting_mol = novelty(gen_smiles_saves, real_smiles)
novel_akt = novelty(gen_smiles_saves, drug_smiles)
if (len(uniq_smiles_saves) == 0):
snn_chembl = 0
snn_akt = 0
maxlen = 0
else:
snn_chembl = average_agg_tanimoto(np.array(chembl_vecs),np.array(gen_vecs))
snn_akt = average_agg_tanimoto(np.array(drug_vecs),np.array(gen_vecs))
maxlen = Metrics.max_component(uniq_smiles_saves, 45)
loss.update({'Validity': valid})
loss.update({'Uniqueness': unique})
loss.update({'Novelty': novel_starting_mol})
loss.update({'Novelty_akt': novel_akt})
loss.update({'SNN_chembl': snn_chembl})
loss.update({'SNN_akt': snn_akt})
loss.update({'MaxLen': maxlen})
loss.update({'Atom_types': atom_types_average})
#wandb.log({"Validity": valid, "Uniqueness": unique, "Novelty": novel_starting_mol,
# "Novelty_akt": novel_akt, "SNN_chembl": snn_chembl, "SNN_akt": snn_akt,
# "MaxLen": maxlen, "Atom_types": atom_types_average})
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
with open(log_path, "a") as f:
f.write(log)
f.write("\n")
print(log)
print("\n")
def plot_grad_flow(named_parameters, model, itera, epoch,grad_flow_directory):
# Based on https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/10
'''Plots the gradients flowing through different layers in the net during training.
Can be used for checking for possible gradient vanishing / exploding problems.
Usage: Plug this function in Trainer class after loss.backwards() as
"plot_grad_flow(self.model.named_parameters())" to visualize the gradient flow'''
ave_grads = []
max_grads= []
layers = []
for n, p in named_parameters:
if(p.requires_grad) and ("bias" not in n):
#print(p.grad,n)
layers.append(n)
ave_grads.append(p.grad.abs().mean().cpu())
max_grads.append(p.grad.abs().max().cpu())
plt.bar(np.arange(len(max_grads)), max_grads, alpha=0.1, lw=1, color="c")
plt.bar(np.arange(len(max_grads)), ave_grads, alpha=0.1, lw=1, color="b")
plt.hlines(0, 0, len(ave_grads)+1, lw=2, color="k" )
plt.xticks(range(0,len(ave_grads), 1), layers, rotation="vertical")
plt.xlim(left=0, right=len(ave_grads))
plt.ylim(bottom = -0.001, top=1) # zoom in on the lower gradient regions
plt.xlabel("Layers")
plt.ylabel("average gradient")
plt.title("Gradient flow")
plt.grid(True)
plt.legend([Line2D([0], [0], color="c", lw=4),
Line2D([0], [0], color="b", lw=4),
Line2D([0], [0], color="k", lw=4)], ['max-gradient', 'mean-gradient', 'zero-gradient'])
pltsavedir = grad_flow_directory
plt.savefig(os.path.join(pltsavedir, "weights_" + model + "_" + str(itera) + "_" + str(epoch) + ".png"), dpi= 500,bbox_inches='tight')
def get_mol(smiles_or_mol):
'''
Loads SMILES/molecule into RDKit's object
'''
if isinstance(smiles_or_mol, str):
if len(smiles_or_mol) == 0:
return None
mol = Chem.MolFromSmiles(smiles_or_mol)
if mol is None:
return None
try:
Chem.SanitizeMol(mol)
except ValueError:
return None
return mol
return smiles_or_mol
def mapper(n_jobs):
'''
Returns function for map call.
If n_jobs == 1, will use standard map
If n_jobs > 1, will use multiprocessing pool
If n_jobs is a pool object, will return its map function
'''
if n_jobs == 1:
def _mapper(*args, **kwargs):
return list(map(*args, **kwargs))
return _mapper
if isinstance(n_jobs, int):
pool = Pool(n_jobs)
def _mapper(*args, **kwargs):
try:
result = pool.map(*args, **kwargs)
finally:
pool.terminate()
return result
return _mapper
return n_jobs.map
def remove_invalid(gen, canonize=True, n_jobs=1):
"""
Removes invalid molecules from the dataset
"""
if not canonize:
mols = mapper(n_jobs)(get_mol, gen)
return [gen_ for gen_, mol in zip(gen, mols) if mol is not None]
return [x for x in mapper(n_jobs)(canonic_smiles, gen) if
x is not None]
def fraction_valid(gen, n_jobs=1):
"""
Computes a number of valid molecules
Parameters:
gen: list of SMILES
n_jobs: number of threads for calculation
"""
gen = mapper(n_jobs)(get_mol, gen)
return 1 - gen.count(None) / len(gen)
def canonic_smiles(smiles_or_mol):
mol = get_mol(smiles_or_mol)
if mol is None:
return None
return Chem.MolToSmiles(mol)
def fraction_unique(gen, k=None, n_jobs=1, check_validity=True):
"""
Computes a number of unique molecules
Parameters:
gen: list of SMILES
k: compute unique@k
n_jobs: number of threads for calculation
check_validity: raises ValueError if invalid molecules are present
"""
if k is not None:
if len(gen) < k:
warnings.warn(
"Can't compute unique@{}.".format(k) +
"gen contains only {} molecules".format(len(gen))
)
gen = gen[:k]
if check_validity:
canonic = list(mapper(n_jobs)(canonic_smiles, gen))
canonic = [i for i in canonic if i is not None]
set_cannonic = set(canonic)
#raise ValueError("Invalid molecule passed to unique@k")
return 0 if len(canonic) == 0 else len(set_cannonic) / len(canonic)
def novelty(gen, train, n_jobs=1):
gen_smiles = mapper(n_jobs)(canonic_smiles, gen)
gen_smiles_set = set(gen_smiles) - {None}
train_set = set(train)
return 0 if len(gen_smiles_set) == 0 else len(gen_smiles_set - train_set) / len(gen_smiles_set)
def internal_diversity(gen):
return 1 - average_agg_tanimoto(gen, gen, agg="mean")
def average_agg_tanimoto(stock_vecs, gen_vecs,
batch_size=5000, agg='max',
device='cpu', p=1):
"""
For each molecule in gen_vecs finds closest molecule in stock_vecs.
Returns average tanimoto score for between these molecules
Parameters:
stock_vecs: numpy array <n_vectors x dim>
gen_vecs: numpy array <n_vectors' x dim>
agg: max or mean
p: power for averaging: (mean x^p)^(1/p)
"""
assert agg in ['max', 'mean'], "Can aggregate only max or mean"
agg_tanimoto = np.zeros(len(gen_vecs))
total = np.zeros(len(gen_vecs))
for j in range(0, stock_vecs.shape[0], batch_size):
x_stock = torch.tensor(stock_vecs[j:j + batch_size]).to(device).float()
for i in range(0, gen_vecs.shape[0], batch_size):
y_gen = torch.tensor(gen_vecs[i:i + batch_size]).to(device).float()
y_gen = y_gen.transpose(0, 1)
tp = torch.mm(x_stock, y_gen)
jac = (tp / (x_stock.sum(1, keepdim=True) +
y_gen.sum(0, keepdim=True) - tp)).cpu().numpy()
jac[np.isnan(jac)] = 1
if p != 1:
jac = jac**p
if agg == 'max':
agg_tanimoto[i:i + y_gen.shape[1]] = np.maximum(
agg_tanimoto[i:i + y_gen.shape[1]], jac.max(0))
elif agg == 'mean':
agg_tanimoto[i:i + y_gen.shape[1]] += jac.sum(0)
total[i:i + y_gen.shape[1]] += jac.shape[0]
if agg == 'mean':
agg_tanimoto /= total
if p != 1:
agg_tanimoto = (agg_tanimoto)**(1/p)
return np.mean(agg_tanimoto)
def str2bool(v):
return v.lower() in ('true') |