Spaces:
Sleeping
Sleeping
File size: 47,968 Bytes
4e04e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 |
import torch
import os
import pandas as pd
import random
from chembl_structure_pipeline import standardizer
from rdkit.Chem import MolStandardize
from rdkit import Chem
import time
import torch
import torch.nn as nn
from torchtext.data import TabularDataset, Field, BucketIterator, Iterator
import random
import os
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import random
from torch import optim
import numpy as np
import itertools
import time
import statistics
from rdkit.Chem import GraphDescriptors, Lipinski, AllChem
from rdkit.Chem.rdSLNParse import MolFromSLN
from rdkit.Chem.rdmolfiles import MolFromSmiles
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
import numpy as np
from rdkit import rdBase, Chem
import re
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
SEED = 42
random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
##################################################################################################
##################################################################################################
# #
# THIS SCRIPT IS DIRECTLY ADAPTED FROM https://github.com/LindeSchoenmaker/SMILES-corrector #
# #
##################################################################################################
##################################################################################################
def is_smiles(array,
TRG,
reverse: bool,
return_output=False,
src=None,
src_field=None):
"""Turns predicted tokens within batch into smiles and evaluates their validity
Arguments:
array: Tensor with most probable token for each location for each sequence in batch
[trg len, batch size]
TRG: target field for getting tokens from vocab
reverse (bool): True if the target sequence is reversed
return_output (bool): True if output sequences and their validity should be saved
Returns:
df: dataframe with correct and incorrect sequences
valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False)
smiless: list of the predicted smiles
"""
trg_field = TRG
valids = []
smiless = []
if return_output:
df = pd.DataFrame()
else:
df = None
batch_size = array.size(1)
# check if the first token should be removed, first token is zero because
# outputs initaliazed to all be zeros
if int((array[0, 0]).tolist()) == 0:
start = 1
else:
start = 0
# for each sequence in the batch
for i in range(0, batch_size):
# turns sequence from tensor to list skipps first row as this is not
# filled in in forward
sequence = (array[start:, i]).tolist()
# goes from embedded to tokens
trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence]
# print(trg_tokens)
# takes all tokens untill eos token, model would be faster if did this
# one step earlier, but then changes in vocab order would disrupt.
rev_tokens = list(
itertools.takewhile(lambda x: x != "<eos>", trg_tokens))
if reverse:
rev_tokens = rev_tokens[::-1]
smiles = "".join(rev_tokens)
# determine how many valid smiles are made
valid = True if MolFromSmiles(smiles) else False
valids.append(valid)
smiless.append(smiles)
if return_output:
if valid:
df.loc[i, "CORRECT"] = smiles
else:
df.loc[i, "INCORRECT"] = smiles
# add the original drugex outputs to the _de dataframe
if return_output and src is not None:
for i in range(0, batch_size):
# turns sequence from tensor to list skipps first row as this is
# <sos> for src
sequence = (src[1:, i]).tolist()
# goes from embedded to tokens
src_tokens = [src_field.vocab.itos[int(t)] for t in sequence]
# takes all tokens untill eos token, model would be faster if did
# this one step earlier, but then changes in vocab order would
# disrupt.
rev_tokens = list(
itertools.takewhile(lambda x: x != "<eos>", src_tokens))
smiles = "".join(rev_tokens)
df.loc[i, "ORIGINAL"] = smiles
return df, valids, smiless
def is_unchanged(array,
TRG,
reverse: bool,
return_output=False,
src=None,
src_field=None):
"""Checks is output is different from input
Arguments:
array: Tensor with most probable token for each location for each sequence in batch
[trg len, batch size]
TRG: target field for getting tokens from vocab
reverse (bool): True if the target sequence is reversed
return_output (bool): True if output sequences and their validity should be saved
Returns:
df: dataframe with correct and incorrect sequences
valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False)
smiless: list of the predicted smiles
"""
trg_field = TRG
sources = []
batch_size = array.size(1)
unchanged = 0
# check if the first token should be removed, first token is zero because
# outputs initaliazed to all be zeros
if int((array[0, 0]).tolist()) == 0:
start = 1
else:
start = 0
for i in range(0, batch_size):
# turns sequence from tensor to list skipps first row as this is <sos>
# for src
sequence = (src[1:, i]).tolist()
# goes from embedded to tokens
src_tokens = [src_field.vocab.itos[int(t)] for t in sequence]
# takes all tokens untill eos token, model would be faster if did this
# one step earlier, but then changes in vocab order would disrupt.
rev_tokens = list(
itertools.takewhile(lambda x: x != "<eos>", src_tokens))
smiles = "".join(rev_tokens)
sources.append(smiles)
# for each sequence in the batch
for i in range(0, batch_size):
# turns sequence from tensor to list skipps first row as this is not
# filled in in forward
sequence = (array[start:, i]).tolist()
# goes from embedded to tokens
trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence]
# print(trg_tokens)
# takes all tokens untill eos token, model would be faster if did this
# one step earlier, but then changes in vocab order would disrupt.
rev_tokens = list(
itertools.takewhile(lambda x: x != "<eos>", trg_tokens))
if reverse:
rev_tokens = rev_tokens[::-1]
smiles = "".join(rev_tokens)
# determine how many valid smiles are made
valid = True if MolFromSmiles(smiles) else False
if not valid:
if smiles == sources[i]:
unchanged += 1
return unchanged
def molecule_reconstruction(array, TRG, reverse: bool, outputs):
"""Turns target tokens within batch into smiles and compares them to predicted output smiles
Arguments:
array: Tensor with target's token for each location for each sequence in batch
[trg len, batch size]
TRG: target field for getting tokens from vocab
reverse (bool): True if the target sequence is reversed
outputs: list of predicted SMILES sequences
Returns:
matches(int): number of total right molecules
"""
trg_field = TRG
matches = 0
targets = []
batch_size = array.size(1)
# for each sequence in the batch
for i in range(0, batch_size):
# turns sequence from tensor to list skipps first row as this is not
# filled in in forward
sequence = (array[1:, i]).tolist()
# goes from embedded to tokens
trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence]
# takes all tokens untill eos token, model would be faster if did this
# one step earlier, but then changes in vocab order would disrupt.
rev_tokens = list(
itertools.takewhile(lambda x: x != "<eos>", trg_tokens))
if reverse:
rev_tokens = rev_tokens[::-1]
smiles = "".join(rev_tokens)
targets.append(smiles)
for i in range(0, batch_size):
m = MolFromSmiles(targets[i])
p = MolFromSmiles(outputs[i])
if p is not None:
if m.HasSubstructMatch(p) and p.HasSubstructMatch(m):
matches += 1
return matches
def complexity_whitlock(mol: Chem.Mol, includeAllDescs=False):
"""
Complexity as defined in DOI:10.1021/jo9814546
S: complexity = 4*#rings + 2*#unsat + #hetatm + 2*#chiral
Other descriptors:
H: size = #bonds (Hydrogen atoms included)
G: S + H
Ratio: S / H
"""
mol_ = Chem.Mol(mol)
nrings = Lipinski.RingCount(mol_) - Lipinski.NumAromaticRings(mol_)
Chem.rdmolops.SetAromaticity(mol_)
unsat = sum(1 for bond in mol_.GetBonds()
if bond.GetBondTypeAsDouble() == 2)
hetatm = len(mol_.GetSubstructMatches(Chem.MolFromSmarts("[!#6]")))
AllChem.EmbedMolecule(mol_)
Chem.AssignAtomChiralTagsFromStructure(mol_)
chiral = len(Chem.FindMolChiralCenters(mol_))
S = 4 * nrings + 2 * unsat + hetatm + 2 * chiral
if not includeAllDescs:
return S
Chem.rdmolops.Kekulize(mol_)
mol_ = Chem.AddHs(mol_)
H = sum(bond.GetBondTypeAsDouble() for bond in mol_.GetBonds())
G = S + H
R = S / H
return {"WhitlockS": S, "WhitlockH": H, "WhitlockG": G, "WhitlockRatio": R}
def complexity_baronechanon(mol: Chem.Mol):
"""
Complexity as defined in DOI:10.1021/ci000145p
"""
mol_ = Chem.Mol(mol)
Chem.Kekulize(mol_)
Chem.RemoveStereochemistry(mol_)
mol_ = Chem.RemoveHs(mol_, updateExplicitCount=True)
degree, counts = 0, 0
for atom in mol_.GetAtoms():
degree += 3 * 2**(atom.GetExplicitValence() - atom.GetNumExplicitHs() -
1)
counts += 3 if atom.GetSymbol() == "C" else 6
ringterm = sum(map(lambda x: 6 * len(x), mol_.GetRingInfo().AtomRings()))
return degree + counts + ringterm
def calc_complexity(array,
TRG,
reverse,
valids,
complexity_function=GraphDescriptors.BertzCT):
"""Calculates the complexity of inputs that are not correct.
Arguments:
array: Tensor with target's token for each location for each sequence in batch
[trg len, batch size]
TRG: target field for getting tokens from vocab
reverse (bool): True if the target sequence is reversed
valids: list with booleans that show if prediction was a valid SMILES (True) or invalid one (False)
complexity_function: the type of complexity measure that will be used
GraphDescriptors.BertzCT
complexity_whitlock
complexity_baronechanon
Returns:
matches(int): mean of complexity values
"""
trg_field = TRG
sources = []
complexities = []
loc = torch.BoolTensor(valids)
# only keeps rows in batch size dimension where valid is false
array = array[:, loc == False]
# should check if this still works
# array = torch.transpose(array, 0, 1)
array_size = array.size(1)
for i in range(0, array_size):
# turns sequence from tensor to list skipps first row as this is not
# filled in in forward
sequence = (array[1:, i]).tolist()
# goes from embedded to tokens
trg_tokens = [trg_field.vocab.itos[int(t)] for t in sequence]
# takes all tokens untill eos token, model would be faster if did this
# one step earlier, but then changes in vocab order would disrupt.
rev_tokens = list(
itertools.takewhile(lambda x: x != "<eos>", trg_tokens))
if reverse:
rev_tokens = rev_tokens[::-1]
smiles = "".join(rev_tokens)
sources.append(smiles)
for source in sources:
try:
m = MolFromSmiles(source)
except BaseException:
m = MolFromSLN(source)
complexities.append(complexity_function(m))
if len(complexities) > 0:
mean = statistics.mean(complexities)
else:
mean = 0
return mean
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
class Convo:
"""Class for training and evaluating transformer and convolutional neural network
Methods
-------
train_model()
train model for initialized number of epochs
evaluate(return_output)
use model with validation loader (& optionally drugex loader) to get test loss & other metrics
translate(loader)
translate inputs from loader (different from evaluate in that no target sequence is used)
"""
def train_model(self):
optimizer = optim.Adam(self.parameters(), lr=self.lr)
log = open(f"{self.out}.log", "a")
best_error = np.inf
for epoch in range(self.epochs):
self.train()
start_time = time.time()
loss_train = 0
for i, batch in enumerate(self.loader_train):
optimizer.zero_grad()
# changed src,trg call to match with bentrevett
# src, trg = batch['src'], batch['trg']
trg = batch.trg
src = batch.src
output, attention = self(src, trg[:, :-1])
# feed the source and target into def forward to get the output
# Xuhan uses forward for this, with istrain = true
output_dim = output.shape[-1]
# changed
output = output.contiguous().view(-1, output_dim)
trg = trg[:, 1:].contiguous().view(-1)
# output = output[:,:,0]#.view(-1)
# output = output[1:].view(-1, output.shape[-1])
# trg = trg[1:].view(-1)
loss = nn.CrossEntropyLoss(
ignore_index=self.TRG.vocab.stoi[self.TRG.pad_token])
a, b = output.view(-1), trg.to(self.device).view(-1)
# changed
# loss = loss(output.view(0), trg.view(0).to(device))
loss = loss(output, trg)
loss.backward()
torch.nn.utils.clip_grad_norm_(self.parameters(), self.clip)
optimizer.step()
loss_train += loss.item()
# turned off for now, as not using voc so won't work, output is a tensor
# output = [(trg len - 1) * batch size, output dim]
# smiles, valid = is_valid_smiles(output, reversed)
# if valid:
# valids += 1
# smiless.append(smiles)
# added .dataset becaue len(iterator) gives len(self.dataset) /
# self.batch_size)
loss_train /= len(self.loader_train)
info = f"Epoch: {epoch+1:02} step: {i} loss_train: {loss_train:.4g}"
# model is used to generate trg based on src from the validation set to assess performance
# similar to Xuhan, although he doesn't use the if loop
if self.loader_valid is not None:
return_output = False
if epoch + 1 == self.epochs:
return_output = True
(
valids,
loss_valid,
valids_de,
df_output,
df_output_de,
right_molecules,
complexity,
unchanged,
unchanged_de,
) = self.evaluate(return_output)
reconstruction_error = 1 - right_molecules / len(
self.loader_valid.dataset)
error = 1 - valids / len(self.loader_valid.dataset)
complexity = complexity / len(self.loader_valid)
unchan = unchanged / (len(self.loader_valid.dataset) - valids)
info += f" loss_valid: {loss_valid:.4g} error_rate: {error:.4g} molecule_reconstruction_error_rate: {reconstruction_error:.4g} unchanged: {unchan:.4g} invalid_target_complexity: {complexity:.4g}"
if self.loader_drugex is not None:
error_de = 1 - valids_de / len(self.loader_drugex.dataset)
unchan_de = unchanged_de / (
len(self.loader_drugex.dataset) - valids_de)
info += f" error_rate_drugex: {error_de:.4g} unchanged_drugex: {unchan_de:.4g}"
if reconstruction_error < best_error:
torch.save(self.state_dict(), f"{self.out}.pkg")
best_error = reconstruction_error
last_save = epoch
else:
if epoch - last_save >= 10 and best_error != 1:
torch.save(self.state_dict(), f"{self.out}_last.pkg")
(
valids,
loss_valid,
valids_de,
df_output,
df_output_de,
right_molecules,
complexity,
unchanged,
unchanged_de,
) = self.evaluate(True)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(
start_time, end_time)
info += f" Time: {epoch_mins}m {epoch_secs}s"
break
elif error < best_error:
torch.save(self.state_dict(), f"{self.out}.pkg")
best_error = error
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
info += f" Time: {epoch_mins}m {epoch_secs}s"
torch.save(self.state_dict(), f"{self.out}_last.pkg")
log.close()
self.load_state_dict(torch.load(f"{self.out}.pkg"))
df_output.to_csv(f"{self.out}.csv", index=False)
df_output_de.to_csv(f"{self.out}_de.csv", index=False)
def evaluate(self, return_output):
self.eval()
test_loss = 0
df_output = pd.DataFrame()
df_output_de = pd.DataFrame()
valids = 0
valids_de = 0
unchanged = 0
unchanged_de = 0
right_molecules = 0
complexity = 0
with torch.no_grad():
for _, batch in enumerate(self.loader_valid):
trg = batch.trg
src = batch.src
output, attention = self.forward(src, trg[:, :-1])
pred_token = output.argmax(2)
array = torch.transpose(pred_token, 0, 1)
trg_trans = torch.transpose(trg, 0, 1)
output_dim = output.shape[-1]
output = output.contiguous().view(-1, output_dim)
trg = trg[:, 1:].contiguous().view(-1)
src_trans = torch.transpose(src, 0, 1)
df_batch, valid, smiless = is_smiles(
array, self.TRG, reverse=True, return_output=return_output)
unchanged += is_unchanged(
array,
self.TRG,
reverse=True,
return_output=return_output,
src=src_trans,
src_field=self.SRC,
)
matches = molecule_reconstruction(trg_trans,
self.TRG,
reverse=True,
outputs=smiless)
complexity += calc_complexity(trg_trans,
self.TRG,
reverse=True,
valids=valid)
if df_batch is not None:
df_output = pd.concat([df_output, df_batch],
ignore_index=True)
right_molecules += matches
valids += sum(valid)
# trg = trg[1:].view(-1)
# output, trg = output[1:].view(-1, output.shape[-1]), trg[1:].view(-1)
loss = nn.CrossEntropyLoss(
ignore_index=self.TRG.vocab.stoi[self.TRG.pad_token])
loss = loss(output, trg)
test_loss += loss.item()
if self.loader_drugex is not None:
for _, batch in enumerate(self.loader_drugex):
src = batch.src
output = self.translate_sentence(src, self.TRG,
self.device)
# checks the number of valid smiles
pred_token = output.argmax(2)
array = torch.transpose(pred_token, 0, 1)
src_trans = torch.transpose(src, 0, 1)
df_batch, valid, smiless = is_smiles(
array,
self.TRG,
reverse=True,
return_output=return_output,
src=src_trans,
src_field=self.SRC,
)
unchanged_de += is_unchanged(
array,
self.TRG,
reverse=True,
return_output=return_output,
src=src_trans,
src_field=self.SRC,
)
if df_batch is not None:
df_output_de = pd.concat([df_output_de, df_batch],
ignore_index=True)
valids_de += sum(valid)
return (
valids,
test_loss / len(self.loader_valid),
valids_de,
df_output,
df_output_de,
right_molecules,
complexity,
unchanged,
unchanged_de,
)
def translate(self, loader):
self.eval()
df_output_de = pd.DataFrame()
valids_de = 0
with torch.no_grad():
for _, batch in enumerate(loader):
src = batch.src
output = self.translate_sentence(src, self.TRG, self.device)
# checks the number of valid smiles
pred_token = output.argmax(2)
array = torch.transpose(pred_token, 0, 1)
src_trans = torch.transpose(src, 0, 1)
df_batch, valid, smiless = is_smiles(
array,
self.TRG,
reverse=True,
return_output=True,
src=src_trans,
src_field=self.SRC,
)
if df_batch is not None:
df_output_de = pd.concat([df_output_de, df_batch],
ignore_index=True)
valids_de += sum(valid)
return valids_de, df_output_de
class Encoder(nn.Module):
def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout,
max_length, device):
super().__init__()
self.device = device
self.tok_embedding = nn.Embedding(input_dim, hid_dim)
self.pos_embedding = nn.Embedding(max_length, hid_dim)
self.layers = nn.ModuleList([
EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device)
for _ in range(n_layers)
])
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
def forward(self, src, src_mask):
# src = [batch size, src len]
# src_mask = [batch size, src len]
batch_size = src.shape[0]
src_len = src.shape[1]
pos = (torch.arange(0, src_len).unsqueeze(0).repeat(batch_size,
1).to(self.device))
# pos = [batch size, src len]
src = self.dropout((self.tok_embedding(src) * self.scale) +
self.pos_embedding(pos))
# src = [batch size, src len, hid dim]
for layer in self.layers:
src = layer(src, src_mask)
# src = [batch size, src len, hid dim]
return src
class EncoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads,
dropout, device)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(
hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, src, src_mask):
# src = [batch size, src len, hid dim]
# src_mask = [batch size, src len]
# self attention
_src, _ = self.self_attention(src, src, src, src_mask)
# dropout, residual connection and layer norm
src = self.self_attn_layer_norm(src + self.dropout(_src))
# src = [batch size, src len, hid dim]
# positionwise feedforward
_src = self.positionwise_feedforward(src)
# dropout, residual and layer norm
src = self.ff_layer_norm(src + self.dropout(_src))
# src = [batch size, src len, hid dim]
return src
class MultiHeadAttentionLayer(nn.Module):
def __init__(self, hid_dim, n_heads, dropout, device):
super().__init__()
assert hid_dim % n_heads == 0
self.hid_dim = hid_dim
self.n_heads = n_heads
self.head_dim = hid_dim // n_heads
self.fc_q = nn.Linear(hid_dim, hid_dim)
self.fc_k = nn.Linear(hid_dim, hid_dim)
self.fc_v = nn.Linear(hid_dim, hid_dim)
self.fc_o = nn.Linear(hid_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device)
def forward(self, query, key, value, mask=None):
batch_size = query.shape[0]
# query = [batch size, query len, hid dim]
# key = [batch size, key len, hid dim]
# value = [batch size, value len, hid dim]
Q = self.fc_q(query)
K = self.fc_k(key)
V = self.fc_v(value)
# Q = [batch size, query len, hid dim]
# K = [batch size, key len, hid dim]
# V = [batch size, value len, hid dim]
Q = Q.view(batch_size, -1, self.n_heads,
self.head_dim).permute(0, 2, 1, 3)
K = K.view(batch_size, -1, self.n_heads,
self.head_dim).permute(0, 2, 1, 3)
V = V.view(batch_size, -1, self.n_heads,
self.head_dim).permute(0, 2, 1, 3)
# Q = [batch size, n heads, query len, head dim]
# K = [batch size, n heads, key len, head dim]
# V = [batch size, n heads, value len, head dim]
energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale
# energy = [batch size, n heads, query len, key len]
if mask is not None:
energy = energy.masked_fill(mask == 0, -1e10)
attention = torch.softmax(energy, dim=-1)
# attention = [batch size, n heads, query len, key len]
x = torch.matmul(self.dropout(attention), V)
# x = [batch size, n heads, query len, head dim]
x = x.permute(0, 2, 1, 3).contiguous()
# x = [batch size, query len, n heads, head dim]
x = x.view(batch_size, -1, self.hid_dim)
# x = [batch size, query len, hid dim]
x = self.fc_o(x)
# x = [batch size, query len, hid dim]
return x, attention
class PositionwiseFeedforwardLayer(nn.Module):
def __init__(self, hid_dim, pf_dim, dropout):
super().__init__()
self.fc_1 = nn.Linear(hid_dim, pf_dim)
self.fc_2 = nn.Linear(pf_dim, hid_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# x = [batch size, seq len, hid dim]
x = self.dropout(torch.relu(self.fc_1(x)))
# x = [batch size, seq len, pf dim]
x = self.fc_2(x)
# x = [batch size, seq len, hid dim]
return x
class Decoder(nn.Module):
def __init__(
self,
output_dim,
hid_dim,
n_layers,
n_heads,
pf_dim,
dropout,
max_length,
device,
):
super().__init__()
self.device = device
self.tok_embedding = nn.Embedding(output_dim, hid_dim)
self.pos_embedding = nn.Embedding(max_length, hid_dim)
self.layers = nn.ModuleList([
DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device)
for _ in range(n_layers)
])
self.fc_out = nn.Linear(hid_dim, output_dim)
self.dropout = nn.Dropout(dropout)
self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device)
def forward(self, trg, enc_src, trg_mask, src_mask):
# trg = [batch size, trg len]
# enc_src = [batch size, src len, hid dim]
# trg_mask = [batch size, trg len]
# src_mask = [batch size, src len]
batch_size = trg.shape[0]
trg_len = trg.shape[1]
pos = (torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size,
1).to(self.device))
# pos = [batch size, trg len]
trg = self.dropout((self.tok_embedding(trg) * self.scale) +
self.pos_embedding(pos))
# trg = [batch size, trg len, hid dim]
for layer in self.layers:
trg, attention = layer(trg, enc_src, trg_mask, src_mask)
# trg = [batch size, trg len, hid dim]
# attention = [batch size, n heads, trg len, src len]
output = self.fc_out(trg)
# output = [batch size, trg len, output dim]
return output, attention
class DecoderLayer(nn.Module):
def __init__(self, hid_dim, n_heads, pf_dim, dropout, device):
super().__init__()
self.self_attn_layer_norm = nn.LayerNorm(hid_dim)
self.enc_attn_layer_norm = nn.LayerNorm(hid_dim)
self.ff_layer_norm = nn.LayerNorm(hid_dim)
self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads,
dropout, device)
self.encoder_attention = MultiHeadAttentionLayer(
hid_dim, n_heads, dropout, device)
self.positionwise_feedforward = PositionwiseFeedforwardLayer(
hid_dim, pf_dim, dropout)
self.dropout = nn.Dropout(dropout)
def forward(self, trg, enc_src, trg_mask, src_mask):
# trg = [batch size, trg len, hid dim]
# enc_src = [batch size, src len, hid dim]
# trg_mask = [batch size, trg len]
# src_mask = [batch size, src len]
# self attention
_trg, _ = self.self_attention(trg, trg, trg, trg_mask)
# dropout, residual connection and layer norm
trg = self.self_attn_layer_norm(trg + self.dropout(_trg))
# trg = [batch size, trg len, hid dim]
# encoder attention
_trg, attention = self.encoder_attention(trg, enc_src, enc_src,
src_mask)
# dropout, residual connection and layer norm
trg = self.enc_attn_layer_norm(trg + self.dropout(_trg))
# trg = [batch size, trg len, hid dim]
# positionwise feedforward
_trg = self.positionwise_feedforward(trg)
# dropout, residual and layer norm
trg = self.ff_layer_norm(trg + self.dropout(_trg))
# trg = [batch size, trg len, hid dim]
# attention = [batch size, n heads, trg len, src len]
return trg, attention
class Seq2Seq(nn.Module, Convo):
def __init__(
self,
encoder,
decoder,
src_pad_idx,
trg_pad_idx,
device,
loader_train: DataLoader,
out: str,
loader_valid=None,
loader_drugex=None,
epochs=100,
lr=0.0005,
clip=0.1,
reverse=True,
TRG=None,
SRC=None,
):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
self.device = device
self.loader_train = loader_train
self.out = out
self.loader_valid = loader_valid
self.loader_drugex = loader_drugex
self.epochs = epochs
self.lr = lr
self.clip = clip
self.reverse = reverse
self.TRG = TRG
self.SRC = SRC
def make_src_mask(self, src):
# src = [batch size, src len]
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
# src_mask = [batch size, 1, 1, src len]
return src_mask
def make_trg_mask(self, trg):
# trg = [batch size, trg len]
trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2)
# trg_pad_mask = [batch size, 1, 1, trg len]
trg_len = trg.shape[1]
trg_sub_mask = torch.tril(
torch.ones((trg_len, trg_len), device=self.device)).bool()
# trg_sub_mask = [trg len, trg len]
trg_mask = trg_pad_mask & trg_sub_mask
# trg_mask = [batch size, 1, trg len, trg len]
return trg_mask
def forward(self, src, trg):
# src = [batch size, src len]
# trg = [batch size, trg len]
src_mask = self.make_src_mask(src)
trg_mask = self.make_trg_mask(trg)
# src_mask = [batch size, 1, 1, src len]
# trg_mask = [batch size, 1, trg len, trg len]
enc_src = self.encoder(src, src_mask)
# enc_src = [batch size, src len, hid dim]
output, attention = self.decoder(trg, enc_src, trg_mask, src_mask)
# output = [batch size, trg len, output dim]
# attention = [batch size, n heads, trg len, src len]
return output, attention
def translate_sentence(self, src, trg_field, device, max_len=202):
self.eval()
src_mask = self.make_src_mask(src)
with torch.no_grad():
enc_src = self.encoder(src, src_mask)
trg_indexes = [trg_field.vocab.stoi[trg_field.init_token]]
batch_size = src.shape[0]
trg = torch.LongTensor(trg_indexes).unsqueeze(0).to(device)
trg = trg.repeat(batch_size, 1)
for i in range(max_len):
# turned model into self.
trg_mask = self.make_trg_mask(trg)
with torch.no_grad():
output, attention = self.decoder(trg, enc_src, trg_mask,
src_mask)
pred_tokens = output.argmax(2)[:, -1].unsqueeze(1)
trg = torch.cat((trg, pred_tokens), 1)
return output
def remove_floats(df: pd.DataFrame, subset: str):
"""Preprocessing step to remove any entries that are not strings"""
df_subset = df[subset]
df[subset] = df[subset].astype(str)
# only keep entries that stayed the same after applying astype str
df = df[df[subset] == df_subset].copy()
return df
def smi_tokenizer(smi: str, reverse=False) -> list:
"""
Tokenize a SMILES molecule
"""
pattern = r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
regex = re.compile(pattern)
# tokens = ['<sos>'] + [token for token in regex.findall(smi)] + ['<eos>']
tokens = [token for token in regex.findall(smi)]
# assert smi == ''.join(tokens[1:-1])
assert smi == "".join(tokens[:])
# try:
# assert smi == "".join(tokens[:])
# except:
# print(smi)
# print("".join(tokens[:]))
if reverse:
return tokens[::-1]
return tokens
def init_weights(m: nn.Module):
if hasattr(m, "weight") and m.weight.dim() > 1:
nn.init.xavier_uniform_(m.weight.data)
def count_parameters(model: nn.Module):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
def initialize_model(folder_out: str,
data_source: str,
error_source: str,
device: torch.device,
threshold: int,
epochs: int,
layers: int = 3,
batch_size: int = 16,
invalid_type: str = "all",
num_errors: int = 1,
validation_step=False):
"""Create encoder decoder models for specified model (currently only translator) & type of invalid SMILES
param data: collection of invalid, valid SMILES pairs
param invalid_smiles_path: path to previously generated invalid SMILES
param invalid_type: type of errors introduced into invalid SMILES
return:
"""
# set fields
SRC = Field(
tokenize=lambda x: smi_tokenizer(x),
init_token="<sos>",
eos_token="<eos>",
batch_first=True,
)
TRG = Field(
tokenize=lambda x: smi_tokenizer(x, reverse=True),
init_token="<sos>",
eos_token="<eos>",
batch_first=True,
)
if validation_step:
train, val = TabularDataset.splits(
path=f'{folder_out}errors/split/',
train=f"{data_source}_{invalid_type}_{num_errors}_errors_train.csv",
validation=
f"{data_source}_{invalid_type}_{num_errors}_errors_dev.csv",
format="CSV",
skip_header=False,
fields={
"ERROR": ("src", SRC),
"STD_SMILES": ("trg", TRG)
},
)
SRC.build_vocab(train, val, max_size=1000)
TRG.build_vocab(train, val, max_size=1000)
else:
train = TabularDataset(
path=
f'{folder_out}{data_source}_{invalid_type}_{num_errors}_errors.csv',
format="CSV",
skip_header=False,
fields={
"ERROR": ("src", SRC),
"STD_SMILES": ("trg", TRG)
},
)
SRC.build_vocab(train, max_size=1000)
TRG.build_vocab(train, max_size=1000)
drugex = TabularDataset(
path=error_source,
format="csv",
skip_header=False,
fields={
"SMILES": ("src", SRC),
"SMILES_TARGET": ("trg", TRG)
},
)
#SRC.vocab = torch.load('vocab_src.pth')
#TRG.vocab = torch.load('vocab_trg.pth')
# model parameters
EPOCHS = epochs
BATCH_SIZE = batch_size
INPUT_DIM = len(SRC.vocab)
OUTPUT_DIM = len(TRG.vocab)
HID_DIM = 256
ENC_LAYERS = layers
DEC_LAYERS = layers
ENC_HEADS = 8
DEC_HEADS = 8
ENC_PF_DIM = 512
DEC_PF_DIM = 512
ENC_DROPOUT = 0.1
DEC_DROPOUT = 0.1
SRC_PAD_IDX = SRC.vocab.stoi[SRC.pad_token]
TRG_PAD_IDX = TRG.vocab.stoi[TRG.pad_token]
# add 2 to length for start and stop tokens
MAX_LENGTH = threshold + 2
# model name
MODEL_OUT_FOLDER = f"{folder_out}"
MODEL_NAME = "transformer_%s_%s_%s_%s_%s" % (
invalid_type, num_errors, data_source, BATCH_SIZE, layers)
if not os.path.exists(MODEL_OUT_FOLDER):
os.mkdir(MODEL_OUT_FOLDER)
out = os.path.join(MODEL_OUT_FOLDER, MODEL_NAME)
torch.save(SRC.vocab, f'{out}_vocab_src.pth')
torch.save(TRG.vocab, f'{out}_vocab_trg.pth')
# iterator is a dataloader
# iterator to pass to the same length and create batches in which the
# amount of padding is minimized
if validation_step:
train_iter, val_iter = BucketIterator.splits(
(train, val),
batch_sizes=(BATCH_SIZE, 256),
sort_within_batch=True,
shuffle=True,
# the BucketIterator needs to be told what function it should use to
# group the data.
sort_key=lambda x: len(x.src),
device=device,
)
else:
train_iter = BucketIterator(
train,
batch_size=BATCH_SIZE,
sort_within_batch=True,
shuffle=True,
# the BucketIterator needs to be told what function it should use to
# group the data.
sort_key=lambda x: len(x.src),
device=device,
)
val_iter = None
drugex_iter = Iterator(
drugex,
batch_size=64,
device=device,
sort=False,
sort_within_batch=True,
sort_key=lambda x: len(x.src),
repeat=False,
)
# model initialization
enc = Encoder(
INPUT_DIM,
HID_DIM,
ENC_LAYERS,
ENC_HEADS,
ENC_PF_DIM,
ENC_DROPOUT,
MAX_LENGTH,
device,
)
dec = Decoder(
OUTPUT_DIM,
HID_DIM,
DEC_LAYERS,
DEC_HEADS,
DEC_PF_DIM,
DEC_DROPOUT,
MAX_LENGTH,
device,
)
model = Seq2Seq(
enc,
dec,
SRC_PAD_IDX,
TRG_PAD_IDX,
device,
train_iter,
out=out,
loader_valid=val_iter,
loader_drugex=drugex_iter,
epochs=EPOCHS,
TRG=TRG,
SRC=SRC,
).to(device)
return model, out, SRC
def train_model(model, out, assess):
"""Apply given weights (& assess performance or train further) or start training new model
Args:
model: initialized model
out: .pkg file with model parameters
asses: bool
Returns:
model with (new) weights
"""
if os.path.exists(f"{out}.pkg") and assess:
model.load_state_dict(torch.load(f=out + ".pkg"))
(
valids,
loss_valid,
valids_de,
df_output,
df_output_de,
right_molecules,
complexity,
unchanged,
unchanged_de,
) = model.evaluate(True)
# log = open('unchanged.log', 'a')
# info = f'type: comb unchanged: {unchan:.4g} unchanged_drugex: {unchan_de:.4g}'
# print(info, file=log, flush = True)
# print(valids_de)
# print(unchanged_de)
# print(unchan)
# print(unchan_de)
# df_output_de.to_csv(f'{out}_de_new.csv', index = False)
# error_de = 1 - valids_de / len(drugex_iter.dataset)
# print(error_de)
# df_output.to_csv(f'{out}_par.csv', index = False)
elif os.path.exists(f"{out}.pkg"):
# starts from the model after the last epoch, not the best epoch
model.load_state_dict(torch.load(f=out + "_last.pkg"))
# need to change how log file names epochs
model.train_model()
else:
model = model.apply(init_weights)
model.train_model()
return model
def correct_SMILES(model, out, error_source, device, SRC):
"""Model that is given corrects SMILES and return number of correct ouputs and dataframe containing all outputs
Args:
model: initialized model
out: .pkg file with model parameters
asses: bool
Returns:
valids: number of fixed outputs
df_output: dataframe containing output (either correct or incorrect) & original input
"""
## account for tokens that are not yet in SRC without changing existing SRC token embeddings
errors = TabularDataset(
path=error_source,
format="csv",
skip_header=False,
fields={"SMILES": ("src", SRC)},
)
errors_loader = Iterator(
errors,
batch_size=64,
device=device,
sort=False,
sort_within_batch=True,
sort_key=lambda x: len(x.src),
repeat=False,
)
model.load_state_dict(torch.load(f=out + ".pkg",map_location=torch.device('cpu')))
# add option to use different iterator maybe?
valids, df_output = model.translate(errors_loader)
#df_output.to_csv(f"{error_source}_fixed.csv", index=False)
return valids, df_output
class smi_correct(object):
def __init__(self, model_name, trans_file_path):
# set random seed, used for error generation & initiation transformer
self.SEED = 42
random.seed(self.SEED)
self.model_name = model_name
self.folder_out = "DrugGEN/data/"
self.trans_file_path = trans_file_path
if not os.path.exists(self.folder_out):
os.makedirs(self.folder_out)
self.invalid_type = 'multiple'
self.num_errors = 12
self.threshold = 200
self.data_source = f"PAPYRUS_{self.threshold}"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
self.initialize_source = 'DrugGEN/data/papyrus_rnn_S.csv' # change this path
def standardization_pipeline(self, smile):
desalter = MolStandardize.fragment.LargestFragmentChooser()
std_smile = None
if not isinstance(smile, str): return None
m = Chem.MolFromSmiles(smile)
# skips smiles for which no mol file could be generated
if m is not None:
# standardizes
std_m = standardizer.standardize_mol(m)
# strips salts
std_m_p, exclude = standardizer.get_parent_mol(std_m)
if not exclude:
# choose largest fragment for rare cases where chembl structure
# pipeline leaves 2 fragments
std_m_p_d = desalter.choose(std_m_p)
std_smile = Chem.MolToSmiles(std_m_p_d)
return std_smile
def remove_smiles_duplicates(self, dataframe: pd.DataFrame,
subset: str) -> pd.DataFrame:
return dataframe.drop_duplicates(subset=subset)
def correct(self, smi):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, out, SRC = initialize_model(self.folder_out,
self.data_source,
error_source=self.initialize_source,
device=device,
threshold=self.threshold,
epochs=30,
layers=3,
batch_size=16,
invalid_type=self.invalid_type,
num_errors=self.num_errors)
valids, df_output = correct_SMILES(model, out, smi, device,
SRC)
df_output["SMILES"] = df_output.apply(lambda row: self.standardization_pipeline(row["CORRECT"]), axis=1)
df_output = self.remove_smiles_duplicates(df_output, subset="SMILES").drop(columns=["CORRECT", "INCORRECT", "ORIGINAL"]).dropna()
return df_output |