File size: 14,931 Bytes
8279c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
from statistics import mean
import os
import math
import time
import datetime
from rdkit import DataStructs
from rdkit import Chem
from rdkit import RDLogger
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
from rdkit.Chem.Scaffolds import MurckoScaffold
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import torch 
import wandb
RDLogger.DisableLog('rdApp.*')
import warnings
from multiprocessing import Pool
class Metrics(object):

    @staticmethod
    def valid(x):
        return x is not None and Chem.MolToSmiles(x) != ''

    @staticmethod
    def tanimoto_sim_1v2(data1, data2):
        min_len = data1.size if data1.size > data2.size else data2
        sims = []
        for i in range(min_len):
            sim = DataStructs.FingerprintSimilarity(data1[i], data2[i])
            sims.append(sim)
        mean_sim = mean(sim)
        return mean_sim

    @staticmethod
    def mol_length(x):
        if x is not None:
            return  len([char for char in max(x.split(sep =".")).upper() if char.isalpha()])
        else:
            return 0
    
    @staticmethod
    def max_component(data, max_len):
        
        return ((np.array(list(map(Metrics.mol_length, data)), dtype=np.float32)/max_len).mean())

    @staticmethod
    def mean_atom_type(data):
        atom_types_used = []
        for i in data:

            atom_types_used.append(len(i.unique().tolist()))
        av_type = np.mean(atom_types_used) - 1
        
        return av_type


def sim_reward(mol_gen, fps_r):
    
    gen_scaf = []
    
    for x in mol_gen: 
        if x is not None:
            try:
                
                gen_scaf.append(MurckoScaffold.GetScaffoldForMol(x))
            except:
                pass

    if len(gen_scaf) == 0:
        
        rew = 1
    else:
        fps = [Chem.RDKFingerprint(x) for x in gen_scaf]
            
        
        fps = np.array(fps)
        fps_r = np.array(fps_r)
    
        rew =  average_agg_tanimoto(fps_r,fps)
        if math.isnan(rew):
            rew = 1
    
    return rew  ## change this to penalty

##########################################
##########################################
##########################################

def mols2grid_image(mols,path):
    mols = [e if e is not None else Chem.RWMol() for e in mols]
    
    for i in range(len(mols)):
        if Metrics.valid(mols[i]):
            AllChem.Compute2DCoords(mols[i])
            Draw.MolToFile(mols[i], os.path.join(path,"{}.png".format(i+1)), size=(1200,1200))
            #wandb.save(os.path.join(path,"{}.png".format(i+1)))
        else:
            continue

def save_smiles_matrices(mols,edges_hard, nodes_hard, path, data_source = None): 
    mols = [e if e is not None else Chem.RWMol() for e in mols]
    
    for i in range(len(mols)):
        if Metrics.valid(mols[i]):
            save_path = os.path.join(path,"{}.txt".format(i+1))
            with open(save_path, "a") as f:
                np.savetxt(f, edges_hard[i].cpu().numpy(), header="edge matrix:\n",fmt='%1.2f')
                f.write("\n")
                np.savetxt(f, nodes_hard[i].cpu().numpy(), header="node matrix:\n", footer="\nsmiles:",fmt='%1.2f')
                f.write("\n")
                #f.write(m0)
                f.write("\n")
            print(Chem.MolToSmiles(mols[i]), file=open(save_path,"a"))
            #wandb.save(save_path)
        else:
            continue


##########################################
##########################################
##########################################


def dense_to_sparse_with_attr(adj):
    assert adj.dim() >= 2 and adj.dim() <= 3
    assert adj.size(-1) == adj.size(-2)

    index = adj.nonzero(as_tuple=True)
    edge_attr = adj[index]

    if len(index) == 3:
        batch = index[0] * adj.size(-1)
        index = (batch + index[1], batch + index[2])
        #index = torch.stack(index, dim=0)
    return index, edge_attr


def label2onehot(labels, dim, device):
    """Convert label indices to one-hot vectors."""
    out = torch.zeros(list(labels.size())+[dim]).to(device)
    out.scatter_(len(out.size())-1,labels.unsqueeze(-1),1.)

    return out.float()


def mol_sample(sample_directory, edges, nodes, idx, i,matrices2mol, dataset_name):
    sample_path = os.path.join(sample_directory,"{}_{}-epoch_iteration".format(idx+1, i+1))
    g_edges_hat_sample = torch.max(edges, -1)[1]
    g_nodes_hat_sample = torch.max(nodes , -1)[1]
    mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=dataset_name)
            for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]

    if not os.path.exists(sample_path):
        os.makedirs(sample_path)

    mols2grid_image(mol,sample_path)
    save_smiles_matrices(mol,g_edges_hat_sample.detach(), g_nodes_hat_sample.detach(), sample_path)

    if len(os.listdir(sample_path)) == 0:
        os.rmdir(sample_path)

    print("Valid molecules are saved.")
    print("Valid matrices and smiles are saved")


def logging(log_path, start_time, i, idx, loss, save_path, drug_smiles, edge, node, 
            matrices2mol, dataset_name, real_adj, real_annot, drug_vecs):

    g_edges_hat_sample = torch.max(edge, -1)[1]
    g_nodes_hat_sample = torch.max(node , -1)[1]

    a_tensor_sample = torch.max(real_adj, -1)[1].float()
    x_tensor_sample = torch.max(real_annot, -1)[1].float()

    mols = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=dataset_name)
            for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]

    real_mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=dataset_name)
            for e_, n_ in zip(a_tensor_sample, x_tensor_sample)]

    atom_types_average = Metrics.mean_atom_type(g_nodes_hat_sample)
    real_smiles = [Chem.MolToSmiles(x) for x in real_mol if x is not None]
    gen_smiles = []
    uniq_smiles = []
    for line in mols:
        if line is not None:
            gen_smiles.append(Chem.MolToSmiles(line))
            uniq_smiles.append(Chem.MolToSmiles(line))
        elif line is None:
            gen_smiles.append(None)

    gen_smiles_saves = [None if x is None else max(x.split('.'), key=len) for x in gen_smiles]
    uniq_smiles_saves = [None if x is None else max(x.split('.'), key=len) for x in uniq_smiles]

    sample_save_dir = os.path.join(save_path, "samples.txt")
    with open(sample_save_dir, "a") as f:
        for idxs in range(len(gen_smiles_saves)):
            if gen_smiles_saves[idxs] is not None:
                f.write(gen_smiles_saves[idxs])
                f.write("\n")

    k = len(set(uniq_smiles_saves) - {None})
    et = time.time() - start_time
    et = str(datetime.timedelta(seconds=et))[:-7]
    log = "Elapsed [{}], Epoch/Iteration [{}/{}]".format(et, idx, i+1)
    gen_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in mols if x is not None]
    chembl_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in real_mol if x is not None]

    # Log update
    #m0 = get_all_metrics(gen = gen_smiles, train = train_smiles, batch_size=batch_size, k = valid_mol_num, device=self.device)
    valid = fraction_valid(gen_smiles_saves)
    unique = fraction_unique(uniq_smiles_saves, k, check_validity=False)
    novel_starting_mol = novelty(gen_smiles_saves, real_smiles)
    novel_akt = novelty(gen_smiles_saves, drug_smiles)
    if (len(uniq_smiles_saves) == 0):
        snn_chembl = 0
        snn_akt = 0
        maxlen = 0
    else:
        snn_chembl = average_agg_tanimoto(np.array(chembl_vecs),np.array(gen_vecs))
        snn_akt = average_agg_tanimoto(np.array(drug_vecs),np.array(gen_vecs))
        maxlen = Metrics.max_component(uniq_smiles_saves, 45)

    loss.update({'Validity': valid})
    loss.update({'Uniqueness': unique})
    loss.update({'Novelty': novel_starting_mol})
    loss.update({'Novelty_akt': novel_akt})
    loss.update({'SNN_chembl': snn_chembl})
    loss.update({'SNN_akt': snn_akt})
    loss.update({'MaxLen': maxlen})
    loss.update({'Atom_types': atom_types_average})

    wandb.log({"Validity": valid, "Uniqueness": unique, "Novelty": novel_starting_mol,
                "Novelty_akt": novel_akt, "SNN_chembl": snn_chembl, "SNN_akt": snn_akt,
                  "MaxLen": maxlen, "Atom_types": atom_types_average})

    for tag, value in loss.items():
        log += ", {}: {:.4f}".format(tag, value)
    with open(log_path, "a") as f:
        f.write(log)
        f.write("\n")
    print(log)
    print("\n")


def plot_grad_flow(named_parameters, model, itera, epoch,grad_flow_directory):
    # Based on https://discuss.pytorch.org/t/check-gradient-flow-in-network/15063/10
    '''Plots the gradients flowing through different layers in the net during training.
    Can be used for checking for possible gradient vanishing / exploding problems.
    
    Usage: Plug this function in Trainer class after loss.backwards() as 
    "plot_grad_flow(self.model.named_parameters())" to visualize the gradient flow'''
    ave_grads = []
    max_grads= []
    layers = []
    for n, p in named_parameters:
        if(p.requires_grad) and ("bias" not in n):
            #print(p.grad,n)
            layers.append(n)
            ave_grads.append(p.grad.abs().mean().cpu())
            max_grads.append(p.grad.abs().max().cpu())
    plt.bar(np.arange(len(max_grads)), max_grads, alpha=0.1, lw=1, color="c")
    plt.bar(np.arange(len(max_grads)), ave_grads, alpha=0.1, lw=1, color="b")
    plt.hlines(0, 0, len(ave_grads)+1, lw=2, color="k" )
    plt.xticks(range(0,len(ave_grads), 1), layers, rotation="vertical")
    plt.xlim(left=0, right=len(ave_grads))
    plt.ylim(bottom = -0.001, top=1) # zoom in on the lower gradient regions
    plt.xlabel("Layers")
    plt.ylabel("average gradient")
    plt.title("Gradient flow")
    plt.grid(True)
    plt.legend([Line2D([0], [0], color="c", lw=4),
                Line2D([0], [0], color="b", lw=4),
                Line2D([0], [0], color="k", lw=4)], ['max-gradient', 'mean-gradient', 'zero-gradient'])
    pltsavedir = grad_flow_directory
    plt.savefig(os.path.join(pltsavedir, "weights_" + model  + "_"  + str(itera) + "_" + str(epoch) +  ".png"), dpi= 500,bbox_inches='tight')


def get_mol(smiles_or_mol):
    '''
    Loads SMILES/molecule into RDKit's object
    '''
    if isinstance(smiles_or_mol, str):
        if len(smiles_or_mol) == 0:
            return None
        mol = Chem.MolFromSmiles(smiles_or_mol)
        if mol is None:
            return None
        try:
            Chem.SanitizeMol(mol)
        except ValueError:
            return None
        return mol
    return smiles_or_mol


def mapper(n_jobs):
    '''
    Returns function for map call.
    If n_jobs == 1, will use standard map
    If n_jobs > 1, will use multiprocessing pool
    If n_jobs is a pool object, will return its map function
    '''
    if n_jobs == 1:
        def _mapper(*args, **kwargs):
            return list(map(*args, **kwargs))

        return _mapper
    if isinstance(n_jobs, int):
        pool = Pool(n_jobs)

        def _mapper(*args, **kwargs):
            try:
                result = pool.map(*args, **kwargs)
            finally:
                pool.terminate()
            return result

        return _mapper
    return n_jobs.map


def remove_invalid(gen, canonize=True, n_jobs=1):
    """
    Removes invalid molecules from the dataset
    """
    if not canonize:
        mols = mapper(n_jobs)(get_mol, gen)
        return [gen_ for gen_, mol in zip(gen, mols) if mol is not None]
    return [x for x in mapper(n_jobs)(canonic_smiles, gen) if
            x is not None]


def fraction_valid(gen, n_jobs=1):
    """
    Computes a number of valid molecules
    Parameters:
        gen: list of SMILES
        n_jobs: number of threads for calculation
    """
    gen = mapper(n_jobs)(get_mol, gen)
    return 1 - gen.count(None) / len(gen)
def canonic_smiles(smiles_or_mol):
    mol = get_mol(smiles_or_mol)
    if mol is None:
        return None
    return Chem.MolToSmiles(mol)
def fraction_unique(gen, k=None, n_jobs=1, check_validity=False):
    """
    Computes a number of unique molecules
    Parameters:
        gen: list of SMILES
        k: compute unique@k
        n_jobs: number of threads for calculation
        check_validity: raises ValueError if invalid molecules are present
    """
    if k is not None:
        if len(gen) < k:
            warnings.warn(
                "Can't compute unique@{}.".format(k) +
                "gen contains only {} molecules".format(len(gen))
            )
        gen = gen[:k]
    canonic = set(mapper(n_jobs)(canonic_smiles, gen))
    if None in canonic and check_validity:
        #canonic = [i for i in canonic if i is not None]
        raise ValueError("Invalid molecule passed to unique@k")
    return 0 if len(gen) == 0 else len(canonic) / len(gen)

def novelty(gen, train, n_jobs=1):
    gen_smiles = mapper(n_jobs)(canonic_smiles, gen)
    gen_smiles_set = set(gen_smiles) - {None}
    train_set = set(train)
    return 0 if len(gen_smiles_set) == 0 else len(gen_smiles_set - train_set) / len(gen_smiles_set)



def average_agg_tanimoto(stock_vecs, gen_vecs,
                         batch_size=5000, agg='max',
                         device='cpu', p=1):
    """
    For each molecule in gen_vecs finds closest molecule in stock_vecs.
    Returns average tanimoto score for between these molecules

    Parameters:
        stock_vecs: numpy array <n_vectors x dim>
        gen_vecs: numpy array <n_vectors' x dim>
        agg: max or mean
        p: power for averaging: (mean x^p)^(1/p)
    """
    assert agg in ['max', 'mean'], "Can aggregate only max or mean"
    agg_tanimoto = np.zeros(len(gen_vecs))
    total = np.zeros(len(gen_vecs))
    for j in range(0, stock_vecs.shape[0], batch_size):
        x_stock = torch.tensor(stock_vecs[j:j + batch_size]).to(device).float()
        for i in range(0, gen_vecs.shape[0], batch_size):
            
            y_gen = torch.tensor(gen_vecs[i:i + batch_size]).to(device).float()
            y_gen = y_gen.transpose(0, 1)
            tp = torch.mm(x_stock, y_gen)
            jac = (tp / (x_stock.sum(1, keepdim=True) +
                         y_gen.sum(0, keepdim=True) - tp)).cpu().numpy()
            jac[np.isnan(jac)] = 1
            if p != 1:
                jac = jac**p
            if agg == 'max':
                agg_tanimoto[i:i + y_gen.shape[1]] = np.maximum(
                    agg_tanimoto[i:i + y_gen.shape[1]], jac.max(0))
            elif agg == 'mean':
                agg_tanimoto[i:i + y_gen.shape[1]] += jac.sum(0)
                total[i:i + y_gen.shape[1]] += jac.shape[0]
    if agg == 'mean':
        agg_tanimoto /= total
    if p != 1:
        agg_tanimoto = (agg_tanimoto)**(1/p)
    return np.mean(agg_tanimoto)

def str2bool(v):
    return v.lower() in ('true')