Upload chatbot.py
Browse files- chatbot.py +95 -0
chatbot.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_cpp import Llama
|
2 |
+
import streamlit as st
|
3 |
+
from langchain.llms.base import LLM
|
4 |
+
from llama_index import LLMPredictor, LangchainEmbedding, ServiceContext, PromptHelper
|
5 |
+
from typing import Optional, List, Mapping, Any
|
6 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
# Set the page config as the first command
|
10 |
+
st.set_page_config(page_title='Mental Heallth chatbot', page_icon=':robot_face:', layout='wide')
|
11 |
+
|
12 |
+
# Define constants
|
13 |
+
MODEL_NAME = 'mellogpt.Q3_K_S.gguf'
|
14 |
+
MODEL_PATH = 'D:\python\Mantal Health 1\python\chatbot\mellogpt.Q3_K_S.gguf'
|
15 |
+
KNOWLEDGE_BASE_FILE = "mentalhealth.csv"
|
16 |
+
|
17 |
+
# Configuration
|
18 |
+
NUM_THREADS = 8
|
19 |
+
MAX_INPUT_SIZE = 2048
|
20 |
+
NUM_OUTPUT = 256
|
21 |
+
CHUNK_OVERLAP_RATIO = 0.10
|
22 |
+
|
23 |
+
# Initialize prompt helper with fallback on exception
|
24 |
+
try:
|
25 |
+
prompt_helper = PromptHelper(MAX_INPUT_SIZE, NUM_OUTPUT, CHUNK_OVERLAP_RATIO)
|
26 |
+
except Exception as e:
|
27 |
+
CHUNK_OVERLAP_RATIO = 0.2
|
28 |
+
prompt_helper = PromptHelper(MAX_INPUT_SIZE, NUM_OUTPUT, CHUNK_OVERLAP_RATIO)
|
29 |
+
|
30 |
+
embed_model = LangchainEmbedding(HuggingFaceEmbeddings())
|
31 |
+
|
32 |
+
class CustomLLM(LLM):
|
33 |
+
model_name = MODEL_NAME
|
34 |
+
|
35 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
36 |
+
p = f"Human: {prompt} Assistant: "
|
37 |
+
prompt_length = len(p)
|
38 |
+
llm = Llama(model_path=MODEL_PATH, n_threads=NUM_THREADS)
|
39 |
+
try:
|
40 |
+
output = llm(p, max_tokens=512, stop=["Human:"], echo=True)['choices'][0]['text']
|
41 |
+
response = output[prompt_length:]
|
42 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
43 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
44 |
+
except Exception as e:
|
45 |
+
st.error("An error occurred while processing your request. Please try again.")
|
46 |
+
|
47 |
+
@property
|
48 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
49 |
+
return {"name_of_model": self.model_name}
|
50 |
+
|
51 |
+
@property
|
52 |
+
def _llm_type(self) -> str:
|
53 |
+
return "custom"
|
54 |
+
|
55 |
+
# Cache functions using the new methods
|
56 |
+
@st.cache_resource
|
57 |
+
def load_model():
|
58 |
+
return CustomLLM()
|
59 |
+
|
60 |
+
@st.cache_data
|
61 |
+
def load_knowledge_base():
|
62 |
+
df = pd.read_csv(KNOWLEDGE_BASE_FILE)
|
63 |
+
return dict(zip(df['Questions'].str.lower(), df['Answers']))
|
64 |
+
|
65 |
+
def clear_convo():
|
66 |
+
st.session_state['messages'] = []
|
67 |
+
|
68 |
+
def init():
|
69 |
+
if 'messages' not in st.session_state:
|
70 |
+
st.session_state['messages'] = []
|
71 |
+
|
72 |
+
# Main function
|
73 |
+
if __name__ == '__main__':
|
74 |
+
init()
|
75 |
+
knowledge_base = load_knowledge_base()
|
76 |
+
llm = load_model()
|
77 |
+
|
78 |
+
clear_button = st.sidebar.button("Clear Conversation")
|
79 |
+
if clear_button:
|
80 |
+
clear_convo()
|
81 |
+
|
82 |
+
user_input = st.text_input("Enter your query:", key="user_input")
|
83 |
+
if user_input:
|
84 |
+
user_input = user_input.lower()
|
85 |
+
answer = knowledge_base.get(user_input)
|
86 |
+
if answer:
|
87 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
88 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
89 |
+
else:
|
90 |
+
llm._call(prompt=user_input)
|
91 |
+
|
92 |
+
for message in st.session_state.messages:
|
93 |
+
with st.container():
|
94 |
+
st.markdown(f"**{message['role'].title()}**: {message['content']}")
|
95 |
+
|