Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the model and tokenizer | |
model_name = "Equall/Saul-7B-Instruct-v1" # This is the model you're using | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Define the prediction function | |
def generate_response(prompt): | |
inputs = tokenizer(f"<s>[INST] Vi ste pravni stručnjak specijaliziran za hrvatsko pravo... {prompt} [/INST]</s>", return_tensors="pt") | |
with torch.no_grad(): | |
output = model.generate(inputs["input_ids"], max_length=500, temperature=0.7, top_p=0.9) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response.strip() | |
# Create the Gradio interface | |
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Croatia Legal Assistant", description="Ask legal questions related to Croatian law.") | |
# Launch the Gradio interface | |
iface.launch() | |