Spaces:
Sleeping
Sleeping
import os | |
import wget | |
import math | |
import numpy as np | |
import librosa | |
import librosa.display | |
import matplotlib.pyplot as plt | |
from scipy.signal import argrelextrema | |
from scipy import linalg | |
import torch | |
from .motion_encoder import VAESKConv | |
class L1div(object): | |
def __init__(self): | |
self.counter = 0 | |
self.sum = 0 | |
def run(self, results): | |
self.counter += results.shape[0] | |
mean = np.mean(results, 0) | |
for i in range(results.shape[0]): | |
results[i, :] = abs(results[i, :] - mean) | |
sum_l1 = np.sum(results) | |
self.sum += sum_l1 | |
def avg(self): | |
return self.sum/self.counter | |
def reset(self): | |
self.counter = 0 | |
self.sum = 0 | |
class SRGR(object): | |
def __init__(self, threshold=0.1, joints=47, joint_dim=3): | |
self.threshold = threshold | |
self.pose_dimes = joints | |
self.joint_dim = joint_dim | |
self.counter = 0 | |
self.sum = 0 | |
def run(self, results, targets, semantic=None, verbose=False): | |
if semantic is None: | |
semantic = np.ones(results.shape[0]) | |
avg_weight = 1.0 | |
else: | |
# srgr == 0.165 when all success, scale range to [0, 1] | |
avg_weight = 0.165 | |
results = results.reshape(-1, self.pose_dimes, self.joint_dim) | |
targets = targets.reshape(-1, self.pose_dimes, self.joint_dim) | |
semantic = semantic.reshape(-1) | |
diff = np.linalg.norm(results-targets, axis=2) # T, J | |
if verbose: print(diff) | |
success = np.where(diff<self.threshold, 1.0, 0.0) | |
for i in range(success.shape[0]): | |
success[i, :] *= semantic[i] * (1/avg_weight) | |
rate = np.sum(success)/(success.shape[0]*success.shape[1]) | |
self.counter += success.shape[0] | |
self.sum += (rate*success.shape[0]) | |
return rate | |
def avg(self): | |
return self.sum/self.counter | |
def reset(self): | |
self.counter = 0 | |
self.sum = 0 | |
class BC(object): | |
def __init__(self, download_path=None, sigma=0.3, order=7, upper_body=[3,6,9,12,13,14,15,16,17,18,19,20,21]): | |
self.sigma = sigma | |
self.order = order | |
self.upper_body = upper_body | |
self.pose_data = [] | |
if download_path is not None: | |
os.makedirs(download_path, exist_ok=True) | |
model_file_path = os.path.join(download_path, "mean_vel_smplxflame_30.npy") | |
if not os.path.exists(model_file_path): | |
print(f"Downloading {model_file_path}") | |
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/mean_vel_smplxflame_30.npy", model_file_path) | |
self.mmae = np.load(os.path.join(download_path, "mean_vel_smplxflame_30.npy")) if download_path is not None else None | |
self.threshold = 0.10 | |
self.counter = 0 | |
self.sum = 0 | |
def load_audio(self, wave, t_start=None, t_end=None, without_file=False, sr_audio=16000): | |
hop_length = 512 | |
if without_file: | |
y = wave | |
else: | |
y, sr = librosa.load(wave, sr=sr_audio) | |
short_y = y[t_start:t_end] if t_start is not None else y | |
onset_t = librosa.onset.onset_detect(y=short_y, sr=sr_audio, hop_length=hop_length, units='time') | |
return onset_t | |
def load_pose(self, pose, t_start, t_end, pose_fps, without_file=False): | |
data_each_file = [] | |
if without_file: | |
for line_data_np in pose: | |
data_each_file.append(line_data_np) | |
else: | |
with open(pose, "r") as f: | |
for i, line_data in enumerate(f.readlines()): | |
if i < 432: | |
continue | |
line_data_np = np.fromstring(line_data, sep=" ") | |
if pose_fps == 15 and i % 2 == 0: | |
continue | |
data_each_file.append(np.concatenate([line_data_np[30:39], line_data_np[112:121]], 0)) | |
data_each_file = np.array(data_each_file)# T*165 | |
# print(data_each_file.shape) | |
joints = data_each_file.transpose(1, 0) | |
dt = 1 / pose_fps | |
init_vel = (joints[:, 1:2] - joints[:, :1]) / dt | |
middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt) | |
final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt | |
vel = np.concatenate([init_vel, middle_vel, final_vel], 1).transpose(1, 0).reshape(data_each_file.shape[0], -1, 3) | |
# print(vel.shape) | |
if self.mmae is not None: | |
vel = np.linalg.norm(vel, axis=2) / self.mmae | |
else: | |
print("Warning: mmae is not provided, using max value of vel as mmae") | |
self.mmae = np.linalg.norm(vel, axis=2).max() | |
vel = np.linalg.norm(vel, axis=2) / self.mmae | |
# print(vel.shape) # T*J | |
beat_vel_all = [] | |
for i in range(vel.shape[1]): | |
vel_mask = np.where(vel[:, i] > self.threshold) | |
beat_vel = argrelextrema(vel[t_start:t_end, i], np.less, order=self.order) | |
beat_vel_list = [j for j in beat_vel[0] if j in vel_mask[0]] | |
beat_vel_all.append(np.array(beat_vel_list)) | |
return beat_vel_all | |
def load_data(self, wave, pose, t_start, t_end, pose_fps): | |
onset_raw = self.load_audio(wave, t_start, t_end) | |
beat_vel_all = self.load_pose(pose, t_start, t_end, pose_fps) | |
return onset_raw, beat_vel_all | |
def eval_random_pose(self, wave, pose, t_start, t_end, pose_fps, num_random=60): | |
onset_raw = self.load_audio(wave, t_start, t_end) | |
dur = t_end - t_start | |
for i in range(num_random): | |
beat_vel_all = self.load_pose(pose, i, i+dur, pose_fps) | |
dis_all_b2a = self.calculate_align(onset_raw, beat_vel_all) | |
print(f"{i}s: ", dis_all_b2a) | |
def plot_onsets(audio, sr, onset_times_1, onset_times_2): | |
fig, axarr = plt.subplots(2, 1, figsize=(10, 10), sharex=True) | |
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[0]) | |
librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[1]) | |
for onset in onset_times_1: | |
axarr[0].axvline(onset, color='r', linestyle='--', alpha=0.9, label='Onset Method 1') | |
axarr[0].legend() | |
axarr[0].set(title='Onset Method 1', xlabel='', ylabel='Amplitude') | |
for onset in onset_times_2: | |
axarr[1].axvline(onset, color='b', linestyle='-', alpha=0.7, label='Onset Method 2') | |
axarr[1].legend() | |
axarr[1].set(title='Onset Method 2', xlabel='Time (s)', ylabel='Amplitude') | |
handles, labels = plt.gca().get_legend_handles_labels() | |
by_label = dict(zip(labels, handles)) | |
plt.legend(by_label.values(), by_label.keys()) | |
plt.title("Audio waveform with Onsets") | |
plt.savefig("./onset.png", dpi=500) | |
def audio_beat_vis(self, onset_raw, onset_bt, onset_bt_rms): | |
fig, ax = plt.subplots(nrows=4, sharex=True) | |
librosa.display.specshow(librosa.amplitude_to_db(self.S, ref=np.max), y_axis='log', x_axis='time', ax=ax[0]) | |
ax[1].plot(self.times, self.oenv, label='Onset strength') | |
ax[1].vlines(librosa.frames_to_time(onset_raw), 0, self.oenv.max(), label='Raw onsets', color='r') | |
ax[1].legend() | |
ax[2].vlines(librosa.frames_to_time(onset_bt), 0, self.oenv.max(), label='Backtracked', color='r') | |
ax[2].legend() | |
ax[3].vlines(librosa.frames_to_time(onset_bt_rms), 0, self.oenv.max(), label='Backtracked (RMS)', color='r') | |
ax[3].legend() | |
fig.savefig("./onset.png", dpi=500) | |
def motion_frames2time(vel, offset, pose_fps): | |
return vel / pose_fps + offset | |
def GAHR(a, b, sigma): | |
dis_all_b2a = 0 | |
for b_each in b: | |
l2_min = min(abs(a_each - b_each) for a_each in a) | |
dis_all_b2a += math.exp(-(l2_min ** 2) / (2 * sigma ** 2)) | |
return dis_all_b2a / len(b) | |
def fix_directed_GAHR(a, b, sigma): | |
a = BC.motion_frames2time(a, 0, 30) | |
b = BC.motion_frames2time(b, 0, 30) | |
a = [0] + a + [len(a)/30] | |
b = [0] + b + [len(b)/30] | |
return BC.GAHR(a, b, sigma) | |
def calculate_align(self, onset_bt_rms, beat_vel, pose_fps=30): | |
avg_dis_all_b2a_list = [] | |
for its, beat_vel_each in enumerate(beat_vel): | |
if its not in self.upper_body: | |
continue | |
if beat_vel_each.size == 0: | |
avg_dis_all_b2a_list.append(0) | |
continue | |
pose_bt = self.motion_frames2time(beat_vel_each, 0, pose_fps) | |
avg_dis_all_b2a_list.append(self.GAHR(pose_bt, onset_bt_rms, self.sigma)) | |
self.counter += 1 | |
self.sum += sum(avg_dis_all_b2a_list) / len(self.upper_body) | |
def avg(self): | |
return self.sum/self.counter | |
def reset(self): | |
self.counter = 0 | |
self.sum = 0 | |
class Arg(object): | |
def __init__(self): | |
self.vae_length = 240 | |
self.vae_test_dim = 330 | |
self.vae_test_len = 32 | |
self.vae_layer = 4 | |
self.vae_test_stride = 20 | |
self.vae_grow = [1, 1, 2, 1] | |
self.variational = False | |
class FGD(object): | |
def __init__(self, download_path="./emage/"): | |
if download_path is not None: | |
os.makedirs(download_path, exist_ok=True) | |
model_file_path = os.path.join(download_path, "AESKConv_240_100.bin") | |
smplx_model_dir = os.path.join(download_path, "smplx_models", "smplx") | |
smplx_model_file_path = os.path.join(smplx_model_dir, "SMPLX_NEUTRAL_2020.npz") | |
if not os.path.exists(model_file_path): | |
print(f"Downloading {model_file_path}") | |
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/AESKConv_240_100.bin", model_file_path) | |
os.makedirs(smplx_model_dir, exist_ok=True) | |
if not os.path.exists(smplx_model_file_path): | |
print(f"Downloading {smplx_model_file_path}") | |
wget.download("https://huggingface.co/spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/smplx_models/smplx/SMPLX_NEUTRAL_2020.npz", smplx_model_file_path) | |
args = Arg() | |
self.eval_model = VAESKConv(args) # Assumes LocalEncoder is defined elsewhere | |
old_stat = torch.load(download_path+"AESKConv_240_100.bin")["model_state"] | |
new_stat = {} | |
for k, v in old_stat.items(): | |
# If 'module.' is in the key, remove it | |
new_key = k.replace('module.', '') if 'module.' in k else k | |
new_stat[new_key] = v | |
self.eval_model.load_state_dict(new_stat) | |
self.eval_model.eval() | |
if torch.cuda.is_available(): | |
self.eval_model.cuda() | |
self.pred_features = [] | |
self.target_features = [] | |
def update(self, pred, target): | |
""" | |
Accumulate the feature representations of predictions and targets. | |
pred: torch.Tensor of predicted data | |
target: torch.Tensor of target data | |
""" | |
self.pred_features.append(self.get_feature(pred).reshape(-1, 240)) | |
self.target_features.append(self.get_feature(target).reshape(-1, 240)) | |
def compute(self): | |
""" | |
Compute the Frechet Distance between the accumulated features. | |
Returns: | |
frechet_distance (float): The FVD score between prediction and target features. | |
""" | |
pred_features = np.concatenate(self.pred_features, axis=0) | |
target_features = np.concatenate(self.target_features, axis=0) | |
print(pred_features.shape, target_features.shape) | |
return self.frechet_distance(pred_features, target_features) | |
def reset(self): | |
""" Reset the accumulated feature lists. """ | |
self.pred_features = [] | |
self.target_features = [] | |
def get_feature(self, data): | |
""" | |
Pass the data through the evaluation model to get the feature representation. | |
data: torch.Tensor of data (e.g., predictions or targets) | |
Returns: | |
feature: numpy array of extracted features | |
""" | |
with torch.no_grad(): | |
if torch.cuda.is_available(): | |
data = data.cuda() | |
feature = self.eval_model.map2latent(data).cpu().numpy() | |
return feature | |
def frechet_distance(samples_A, samples_B): | |
""" | |
Compute the Frechet Distance between two sets of features. | |
samples_A: numpy array of features from set A (e.g., predictions) | |
samples_B: numpy array of features from set B (e.g., targets) | |
Returns: | |
frechet_dist (float): The Frechet Distance between the two feature sets. | |
""" | |
A_mu = np.mean(samples_A, axis=0) | |
A_sigma = np.cov(samples_A, rowvar=False) | |
B_mu = np.mean(samples_B, axis=0) | |
B_sigma = np.cov(samples_B, rowvar=False) | |
try: | |
frechet_dist = FGD.calculate_frechet_distance(A_mu, A_sigma, B_mu, B_sigma) | |
except ValueError: | |
frechet_dist = 1e+10 | |
return frechet_dist | |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
""" | |
Calculate the Frechet Distance between two multivariate Gaussians. | |
mu1: Mean vector of the first distribution (generated data). | |
sigma1: Covariance matrix of the first distribution. | |
mu2: Mean vector of the second distribution (target data). | |
sigma2: Covariance matrix of the second distribution. | |
Returns: | |
Frechet Distance (float) | |
""" | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths' | |
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions' | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
# if not np.isfinite(covmean).all(): | |
# msg = ('Frechet Distance calculation produces singular product; ' | |
# 'adding %s to diagonal of covariance estimates') % eps | |
# print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError(f'Imaginary component {m}') | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return (diff.dot(diff) + np.trace(sigma1) + | |
np.trace(sigma2) - 2 * tr_covmean) |