File size: 19,128 Bytes
31f2f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "**Fixes by: [justinjohn-03](https://github.com/justinjohn0306)**"
      ],
      "metadata": {
        "id": "9Uyk6DCBGHuW"
      }
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "U1xFNFU58_2j"
      },
      "source": [
        "## Goal: Make anyone speak anything (LipSync)\n",
        "\n",
        "* Github: https://github.com/Rudrabha/Wav2Lip\n",
        "* Paper: https://arxiv.org/abs/2008.10010\n",
        "*Original notebook: https://colab.research.google.com/drive/1tZpDWXz49W6wDcTprANRGLo2D_EbD5J8?usp=sharing\n",
        "\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "Qgo-oaI3JU2u",
        "cellView": "form"
      },
      "source": [
        "#@title <h1>Step1: Setup Wav2Lip</h1>\n",
        "#@markdown * Install dependency\n",
        "#@markdown * Download pretrained model\n",
        "!rm -rf /content/sample_data\n",
        "!mkdir /content/sample_data\n",
        "\n",
        "!git clone https://github.com/zabique/Wav2Lip\n",
        "\n",
        "#download the pretrained model\n",
        "!wget 'https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/download.aspx?share=EdjI7bZlgApMqsVoEUUXpLsBxqXbn5z8VTmoxp55YNDcIA' -O '/content/Wav2Lip/checkpoints/wav2lip_gan.pth'\n",
        "a = !pip install https://raw.githubusercontent.com/AwaleSajil/ghc/master/ghc-1.0-py3-none-any.whl\n",
        "\n",
        "# !pip uninstall tensorflow tensorflow-gpu\n",
        "!cd Wav2Lip && pip install -r requirements.txt\n",
        "\n",
        "#download pretrained model for face detection\n",
        "!wget \"https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth\" -O \"/content/Wav2Lip/face_detection/detection/sfd/s3fd.pth\"\n",
        "\n",
        "!pip install -q youtube-dl\n",
        "!pip install ffmpeg-python\n",
        "!pip install librosa==0.9.1\n",
        "\n",
        "#this code for recording audio\n",
        "\"\"\"\n",
        "To write this piece of code I took inspiration/code from a lot of places.\n",
        "It was late night, so I'm not sure how much I created or just copied o.O\n",
        "Here are some of the possible references:\n",
        "https://blog.addpipe.com/recording-audio-in-the-browser-using-pure-html5-and-minimal-javascript/\n",
        "https://stackoverflow.com/a/18650249\n",
        "https://hacks.mozilla.org/2014/06/easy-audio-capture-with-the-mediarecorder-api/\n",
        "https://air.ghost.io/recording-to-an-audio-file-using-html5-and-js/\n",
        "https://stackoverflow.com/a/49019356\n",
        "\"\"\"\n",
        "from IPython.display import HTML, Audio\n",
        "from google.colab.output import eval_js\n",
        "from base64 import b64decode\n",
        "import numpy as np\n",
        "from scipy.io.wavfile import read as wav_read\n",
        "import io\n",
        "import ffmpeg\n",
        "\n",
        "AUDIO_HTML = \"\"\"\n",
        "<script>\n",
        "var my_div = document.createElement(\"DIV\");\n",
        "var my_p = document.createElement(\"P\");\n",
        "var my_btn = document.createElement(\"BUTTON\");\n",
        "var t = document.createTextNode(\"Press to start recording\");\n",
        "\n",
        "my_btn.appendChild(t);\n",
        "//my_p.appendChild(my_btn);\n",
        "my_div.appendChild(my_btn);\n",
        "document.body.appendChild(my_div);\n",
        "\n",
        "var base64data = 0;\n",
        "var reader;\n",
        "var recorder, gumStream;\n",
        "var recordButton = my_btn;\n",
        "\n",
        "var handleSuccess = function(stream) {\n",
        "  gumStream = stream;\n",
        "  var options = {\n",
        "    //bitsPerSecond: 8000, //chrome seems to ignore, always 48k\n",
        "    mimeType : 'audio/webm;codecs=opus'\n",
        "    //mimeType : 'audio/webm;codecs=pcm'\n",
        "  };            \n",
        "  //recorder = new MediaRecorder(stream, options);\n",
        "  recorder = new MediaRecorder(stream);\n",
        "  recorder.ondataavailable = function(e) {            \n",
        "    var url = URL.createObjectURL(e.data);\n",
        "    var preview = document.createElement('audio');\n",
        "    preview.controls = true;\n",
        "    preview.src = url;\n",
        "    document.body.appendChild(preview);\n",
        "\n",
        "    reader = new FileReader();\n",
        "    reader.readAsDataURL(e.data); \n",
        "    reader.onloadend = function() {\n",
        "      base64data = reader.result;\n",
        "      //console.log(\"Inside FileReader:\" + base64data);\n",
        "    }\n",
        "  };\n",
        "  recorder.start();\n",
        "  };\n",
        "\n",
        "recordButton.innerText = \"Recording... press to stop\";\n",
        "\n",
        "navigator.mediaDevices.getUserMedia({audio: true}).then(handleSuccess);\n",
        "\n",
        "\n",
        "function toggleRecording() {\n",
        "  if (recorder && recorder.state == \"recording\") {\n",
        "      recorder.stop();\n",
        "      gumStream.getAudioTracks()[0].stop();\n",
        "      recordButton.innerText = \"Saving the recording... pls wait!\"\n",
        "  }\n",
        "}\n",
        "\n",
        "// https://stackoverflow.com/a/951057\n",
        "function sleep(ms) {\n",
        "  return new Promise(resolve => setTimeout(resolve, ms));\n",
        "}\n",
        "\n",
        "var data = new Promise(resolve=>{\n",
        "//recordButton.addEventListener(\"click\", toggleRecording);\n",
        "recordButton.onclick = ()=>{\n",
        "toggleRecording()\n",
        "\n",
        "sleep(2000).then(() => {\n",
        "  // wait 2000ms for the data to be available...\n",
        "  // ideally this should use something like await...\n",
        "  //console.log(\"Inside data:\" + base64data)\n",
        "  resolve(base64data.toString())\n",
        "\n",
        "});\n",
        "\n",
        "}\n",
        "});\n",
        "      \n",
        "</script>\n",
        "\"\"\"\n",
        "\n",
        "%cd /\n",
        "from ghc.l_ghc_cf import l_ghc_cf\n",
        "%cd content\n",
        "\n",
        "def get_audio():\n",
        "  display(HTML(AUDIO_HTML))\n",
        "  data = eval_js(\"data\")\n",
        "  binary = b64decode(data.split(',')[1])\n",
        "  \n",
        "  process = (ffmpeg\n",
        "    .input('pipe:0')\n",
        "    .output('pipe:1', format='wav')\n",
        "    .run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True, quiet=True, overwrite_output=True)\n",
        "  )\n",
        "  output, err = process.communicate(input=binary)\n",
        "  \n",
        "  riff_chunk_size = len(output) - 8\n",
        "  # Break up the chunk size into four bytes, held in b.\n",
        "  q = riff_chunk_size\n",
        "  b = []\n",
        "  for i in range(4):\n",
        "      q, r = divmod(q, 256)\n",
        "      b.append(r)\n",
        "\n",
        "  # Replace bytes 4:8 in proc.stdout with the actual size of the RIFF chunk.\n",
        "  riff = output[:4] + bytes(b) + output[8:]\n",
        "\n",
        "  sr, audio = wav_read(io.BytesIO(riff))\n",
        "\n",
        "  return audio, sr\n",
        "\n",
        "\n",
        "from IPython.display import HTML\n",
        "from base64 import b64encode\n",
        "def showVideo(path):\n",
        "  mp4 = open(str(path),'rb').read()\n",
        "  data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
        "  return HTML(\"\"\"\n",
        "  <video width=700 controls>\n",
        "        <source src=\"%s\" type=\"video/mp4\">\n",
        "  </video>\n",
        "  \"\"\" % data_url)\n",
        "\n",
        "from IPython.display import clear_output"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "SEdy6PWDXMRL"
      },
      "source": [
        "# LipSync Youtube Video"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "QI4kcm8QEeGZ",
        "cellView": "form"
      },
      "source": [
        "#@title STEP2: Select a Youtube Video\n",
        "# Install yt-dlp\n",
        "!pip install yt-dlp\n",
        "\n",
        "#@markdown ### Find YouTube video ID from URL\n",
        "from urllib import parse as urlparse\n",
        "YOUTUBE_URL = 'https://www.youtube.com/watch?v=vAnWYLTdvfY' #@param {type:\"string\"}\n",
        "url_data = urlparse.urlparse(YOUTUBE_URL)\n",
        "query = urlparse.parse_qs(url_data.query)\n",
        "YOUTUBE_ID = query[\"v\"][0]\n",
        "\n",
        "#@markdown ### Trim the video (start, end) seconds\n",
        "start = 35 #@param {type:\"integer\"}\n",
        "end = 62 #@param {type:\"integer\"}\n",
        "interval = end - start\n",
        "\n",
        "# Download the YouTube video using yt-dlp\n",
        "!yt-dlp -f 'bestvideo[ext=mp4]' --output \"youtube.%(ext)s\" https://www.youtube.com/watch?v=$YOUTUBE_ID\n",
        "\n",
        "# Cut the video using FFmpeg\n",
        "!ffmpeg -y -i youtube.mp4 -ss {start} -t {interval} -async 1 /content/sample_data/input_vid.mp4\n",
        "\n",
        "# Preview the trimmed video\n",
        "from IPython.display import HTML\n",
        "from base64 import b64encode\n",
        "mp4 = open('/content/sample_data/input_vid.mp4','rb').read()\n",
        "data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
        "HTML(f\"\"\"<video width=600 controls><source src=\"{data_url}\"></video>\"\"\")\n",
        "\n"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "zS_RAeh-IfZy",
        "cellView": "form"
      },
      "source": [
        "#@title STEP3: Select Audio (Record or Upload)\n",
        "from IPython.display import Audio \n",
        "from IPython.core.display import display\n",
        "\n",
        "record_or_upload = 'Upload' #@param ['Record', 'Upload']\n",
        "\n",
        "def displayAudio():\n",
        "  display(Audio('/content/sample_data/input_audio.wav'))\n",
        "if record_or_upload == 'Record':\n",
        "  audio, sr = get_audio()\n",
        "  import scipy\n",
        "  scipy.io.wavfile.write('/content/sample_data/input_audio.wav', sr, audio)\n",
        "elif record_or_upload == 'Upload':\n",
        "  from google.colab import files\n",
        "  uploaded = files.upload()\n",
        "  for fn in uploaded.keys():\n",
        "    print('User uploaded file \"{name}\" with length {length} bytes'.format(\n",
        "        name=fn, length=len(uploaded[fn])))\n",
        "  \n",
        "  #concider only the first file\n",
        "  audio_file = str(list(uploaded.keys())[0])\n",
        "  \n",
        "  # Load audio with specified sampling rate\n",
        "  import librosa\n",
        "  audio, sr = librosa.load(audio_file, sr=None)\n",
        "  \n",
        "  # Save audio with specified sampling rate\n",
        "  import soundfile as sf\n",
        "  sf.write('/content/sample_data/input_audio.wav', audio, sr, format='wav')\n",
        "  \n",
        "  clear_output()\n",
        "  displayAudio()"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "BQPLXJ8L0gms",
        "cellView": "form"
      },
      "source": [
        "#@title STEP4: Start Crunching and Preview Output\n",
        "#@markdown <b>Note: Only change these, if you have to</b>\n",
        "pad_top =  0#@param {type:\"integer\"}\n",
        "pad_bottom =  10#@param {type:\"integer\"}\n",
        "pad_left =  0#@param {type:\"integer\"}\n",
        "pad_right =  0#@param {type:\"integer\"}\n",
        "rescaleFactor =  1#@param {type:\"integer\"}\n",
        "nosmooth = False #@param {type:\"boolean\"}\n",
        "\n",
        "\n",
        "if nosmooth == False:\n",
        "  !cd Wav2Lip && python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face \"../sample_data/input_vid.mp4\" --audio \"../sample_data/input_audio.wav\" --pads $pad_top $pad_bottom $pad_left $pad_right --resize_factor $rescaleFactor\n",
        "else:\n",
        "  !cd Wav2Lip && python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face \"../sample_data/input_vid.mp4\" --audio \"../sample_data/input_audio.wav\" --pads $pad_top $pad_bottom $pad_left $pad_right --resize_factor $rescaleFactor --nosmooth\n",
        "#Preview output video\n",
        "clear_output()\n",
        "print(\"Final Video Preview\")\n",
        "print(\"Download this video from\", '/content/Wav2Lip/results/result_voice.mp4')\n",
        "showVideo('/content/Wav2Lip/results/result_voice.mp4')\n"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vYxpPeie1CYL"
      },
      "source": [
        "# LipSync on Your Video File"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "nDuM7tfZ1F0t",
        "cellView": "form"
      },
      "source": [
        "import os\n",
        "from google.colab import files\n",
        "from IPython.display import HTML\n",
        "\n",
        "def showVideo(file_path):\n",
        "    \"\"\"Function to display video in Colab\"\"\"\n",
        "    mp4 = open(file_path,'rb').read()\n",
        "    data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
        "    display(HTML(\"\"\"\n",
        "    <video controls width=600>\n",
        "        <source src=\"%s\" type=\"video/mp4\">\n",
        "    </video>\n",
        "    \"\"\" % data_url))\n",
        "\n",
        "#@markdown ### Select an uploading method\n",
        "upload_or_path = \"Upload\" #@param [\"Upload\", \"Custom Path\"]\n",
        "\n",
        "if upload_or_path == \"Upload\":\n",
        "    uploaded = files.upload()\n",
        "    for filename in uploaded.keys():\n",
        "        os.rename(filename, '/content/sample_data/input_vid.mp4')\n",
        "    PATH_TO_YOUR_VIDEO = '/content/sample_data/input_vid.mp4'\n",
        "else:\n",
        "    PATH_TO_YOUR_VIDEO = '/content/test.mp4' #@param {type:\"string\"}\n",
        "    if not os.path.isfile(PATH_TO_YOUR_VIDEO):\n",
        "        print(\"ERROR: File not found!\")\n",
        "        raise SystemExit(0)\n",
        "\n",
        "#@markdown ### Trim the video (start, end) seconds\n",
        "start_time = 0 #@param {type:\"integer\"}\n",
        "end_time = 0 #@param {type:\"integer\"}\n",
        "\n",
        "if start_time == 0 and end_time == 0:\n",
        "    print(\"No trimming applied\")\n",
        "else:\n",
        "    duration = end_time - start_time\n",
        "    os.system(f\"ffmpeg -i {PATH_TO_YOUR_VIDEO} -ss {start_time} -t {duration} -async 1 /content/sample_data/trimmed_vid.mp4\")\n",
        "    PATH_TO_YOUR_VIDEO = \"/content/sample_data/input_vid.mp4\"\n",
        "    print(f\"Video trimmed from {start_time} to {end_time} seconds\")\n",
        "\n",
        "print(f\"PATH_TO_YOUR_VIDEO: {PATH_TO_YOUR_VIDEO}\")\n",
        "\n",
        "if upload_or_path == \"Upload\":\n",
        "    clear_output()\n",
        "    print(\"Input Video\")\n",
        "    showVideo(PATH_TO_YOUR_VIDEO)\n",
        "else:\n",
        "    if os.path.isfile(PATH_TO_YOUR_VIDEO):\n",
        "        print(\"Input Video\")\n",
        "        showVideo(PATH_TO_YOUR_VIDEO)\n"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "XgF4794r7sWK",
        "cellView": "form"
      },
      "source": [
        "#@title STEP3: Select Audio (Record or Upload)\n",
        "from IPython.display import Audio \n",
        "from IPython.core.display import display\n",
        "\n",
        "record_or_upload = 'Upload' #@param ['Record', 'Upload']\n",
        "\n",
        "def displayAudio():\n",
        "  display(Audio('/content/sample_data/input_audio.wav'))\n",
        "if record_or_upload == 'Record':\n",
        "  audio, sr = get_audio()\n",
        "  import scipy\n",
        "  scipy.io.wavfile.write('/content/sample_data/input_audio.wav', sr, audio)\n",
        "elif record_or_upload == 'Upload':\n",
        "  from google.colab import files\n",
        "  uploaded = files.upload()\n",
        "  for fn in uploaded.keys():\n",
        "    print('User uploaded file \"{name}\" with length {length} bytes'.format(\n",
        "        name=fn, length=len(uploaded[fn])))\n",
        "  \n",
        "  #concider only the first file\n",
        "  audio_file = str(list(uploaded.keys())[0])\n",
        "  \n",
        "  # Load audio with specified sampling rate\n",
        "  import librosa\n",
        "  audio, sr = librosa.load(audio_file, sr=None)\n",
        "  \n",
        "  # Save audio with specified sampling rate\n",
        "  import soundfile as sf\n",
        "  sf.write('/content/sample_data/input_audio.wav', audio, sr, format='wav')\n",
        "  \n",
        "  clear_output()\n",
        "  displayAudio()"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "ZgtO08V28ANf",
        "cellView": "form"
      },
      "source": [
        "#@title STEP4: Start Crunching and Preview Output\n",
        "#@markdown <b>Note: Only change these, if you have to</b>\n",
        "pad_top =  0#@param {type:\"integer\"}\n",
        "pad_bottom =  10#@param {type:\"integer\"}\n",
        "pad_left =  0#@param {type:\"integer\"}\n",
        "pad_right =  0#@param {type:\"integer\"}\n",
        "rescaleFactor =  1#@param {type:\"integer\"}\n",
        "nosmooth = False #@param {type:\"boolean\"}\n",
        "\n",
        "if nosmooth == False:\n",
        "  !cd Wav2Lip && python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face \"../sample_data/input_vid.mp4\" --audio \"../sample_data/input_audio.wav\" --pads $pad_top $pad_bottom $pad_left $pad_right --resize_factor $rescaleFactor\n",
        "else:\n",
        "  !cd Wav2Lip && python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face \"../sample_data/input_vid.mp4\" --audio \"../sample_data/input_audio.wav\" --pads $pad_top $pad_bottom $pad_left $pad_right --resize_factor $rescaleFactor --nosmooth\n",
        "\n",
        "#Preview output video\n",
        "clear_output()\n",
        "print(\"Final Video Preview\")\n",
        "print(\"Dowload this video from\", '/content/Wav2Lip/results/result_voice.mp4')\n",
        "showVideo('/content/Wav2Lip/results/result_voice.mp4')\n"
      ],
      "execution_count": null,
      "outputs": []
    }
  ]
}