Spaces:
Sleeping
Sleeping
File size: 25,632 Bytes
b03a8f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import os
import shutil
import argparse
import random
import numpy as np
from datetime import datetime
from tqdm import tqdm
import importlib
import copy
import librosa
from pathlib import Path
import json
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, WeightedRandomSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import wandb
from diffusers.optimization import get_scheduler
from omegaconf import OmegaConf
from emage_evaltools.mertic import FGD, BC, L1div
from emage_utils.motion_io import beat_format_load, beat_format_save, MASK_DICT, recover_from_mask, recover_from_mask_ts
import emage_utils.rotation_conversions as rc
from emage_utils import fast_render
from emage_utils.motion_rep_transfer import get_motion_rep_numpy
# --------------------------------- loss here --------------------------------- #
class GeodesicLoss(nn.Module):
def __init__(self):
super(GeodesicLoss, self).__init__()
def compute_geodesic_distance(self, m1, m2):
m1 = m1.reshape(-1, 3, 3)
m2 = m2.reshape(-1, 3, 3)
m = torch.bmm(m1, m2.transpose(1, 2))
cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2
cos = torch.clamp(cos, min=-1 + 1E-6, max=1-1E-6)
theta = torch.acos(cos)
return theta
def __call__(self, m1, m2, reduction='mean'):
loss = self.compute_geodesic_distance(m1, m2)
if reduction == 'mean':
return loss.mean()
elif reduction == 'none':
return loss
else:
raise RuntimeError
GeodesicLossFn = GeodesicLoss()
def contrastive_loss(features, labels, margin=1.0):
# features: [bs, n, c]
# labels: [bs, 1]
# first, reduce features along time (or sequence) dimension
feats = features.mean(dim=1) # [bs, c]
lbs = labels.squeeze(-1) # [bs]
# compute pairwise distances
dist = torch.cdist(feats, feats, p=2) # [bs, bs]
pos_mask = (lbs.unsqueeze(0) == lbs.unsqueeze(1)).float() # [bs, bs]
# positive pairs: distance should be small
pos_loss = pos_mask * dist
# negative pairs: distance should be large
# margin-based loss
neg_loss = (1.0 - pos_mask) * F.relu(margin - dist)
return pos_loss.mean() + neg_loss.mean()
def get_weighted_sampler(dataset):
# Collect labels
labels = []
for item in dataset.data_list:
labels.append(item["content_label"])
labels = np.array(labels)
class_counts = np.bincount(labels)
weights = 1.0 / class_counts[labels]
sampler = WeightedRandomSampler(
weights=weights,
num_samples=len(weights), # Usually same as dataset size
replacement=True # Typically True for weighted sampling
)
return sampler
# --------------------------------- train,val,test fn here --------------------------------- #
def inference_fn(cfg, model, device, test_path, save_path):
actual_model = model.module if isinstance(model, torch.nn.parallel.DistributedDataParallel) else model
actual_model.eval()
torch.set_grad_enabled(False)
test_list = []
for data_meta_path in test_path:
test_list.extend(json.load(open(data_meta_path, "r")))
test_list = [item for item in test_list if item.get("mode") == "test"]
seen_ids = set()
test_list = [item for item in test_list if not (item["video_id"] in seen_ids or seen_ids.add(item["video_id"]))]
save_list = []
start_time = time.time()
total_length = 0
for test_file in tqdm(test_list, desc="Testing"):
audio, _ = librosa.load(test_file["audio_path"], sr=cfg.audio_sr)
audio = torch.from_numpy(audio).to(device).unsqueeze(0)
speaker_id = torch.zeros(1,1).to(device).long()
motion_pred = actual_model(audio, speaker_id, seed_frames=4, seed_motion=None)["motion_axis_angle"]
t = motion_pred.shape[1]
motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
beat_format_save(os.path.join(save_path, f"{test_file['video_id']}_output.npz"), motion_pred, upsample=30//cfg.pose_fps)
save_list.append(
{
"audio_path": test_file["audio_path"],
"motion_path": os.path.join(save_path, f"{test_file['video_id']}_output.npz"),
"video_id": test_file["video_id"],
}
)
total_length+=t
time_cost = time.time() - start_time
print(f"\n cost {time_cost:.2f} seconds to generate {total_length / cfg.pose_fps:.2f} seconds of motion")
return test_list, save_list
def train_val_fn(cfg, batch, model, device, mode="train", optimizer=None, lr_scheduler=None, fgd_evaluator=None):
model.train() if mode == "train" else model.eval()
torch.set_grad_enabled(mode == "train")
joint_mask = MASK_DICT[cfg.model.joint_mask]
if mode == "train":
optimizer.zero_grad()
motion_gt = batch["motion"].to(device)
audio = batch["audio"].to(device)
rhythm = batch["rhythm_label"].to(device)
content = batch["content_label"].to(device)
bs, t, jc = motion_gt.shape
j = jc // 3
speaker_id = torch.zeros(bs,1).to(device).long()
motion_gt = rc.axis_angle_to_rotation_6d(motion_gt.reshape(bs,t,j,3)).reshape(bs, t, j*6)
all_pred = model(audio, speaker_id, seed_frames=4, seed_motion=motion_gt, return_axis_angle=False)
motion_pred = all_pred["motion"]
motion_pred = rc.rotation_6d_to_matrix(motion_pred.reshape(bs,t,j,6))
motion_gt = rc.rotation_6d_to_matrix(motion_gt.reshape(bs,t,j,6))
loss = GeodesicLossFn(motion_pred, motion_gt)
loss_dict = {"loss": loss}
# feature disentanglement loss
rhythm_fea = all_pred["audio_fea_r"]
content_fea = all_pred["audio_fea_c"]
# if two features are the same rhythm class, the distance should be small, other wise large
rhythm_fea = F.normalize(rhythm_fea, dim=1)
content_fea = F.normalize(content_fea, dim=1)
rhythm_disentangle_loss = contrastive_loss(rhythm_fea, rhythm)
content_disentangle_loss = contrastive_loss(content_fea, content)
loss_dict["rhythm"] = rhythm_disentangle_loss
loss_dict["content"] = content_disentangle_loss
all_loss = sum(loss_dict.values())
loss_dict["all_loss"] = all_loss
if mode == "train":
if cfg.solver.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.solver.max_grad_norm)
all_loss.backward()
optimizer.step()
lr_scheduler.step()
if mode == "val":
motion_pred = rc.matrix_to_rotation_6d(motion_pred).reshape(bs, t, j*6)
motion_gt = rc.matrix_to_rotation_6d(motion_gt).reshape(bs, t, j*6)
padded_pred = recover_from_mask_ts(motion_pred, joint_mask)
padded_gt = recover_from_mask_ts(motion_gt, joint_mask)
fgd_evaluator.update(padded_pred, padded_gt)
return loss_dict
# --------------------------------- main train loop here --------------------------------- #
def main(cfg):
seed_everything(cfg.seed)
os.environ["WANDB_API_KEY"] = cfg.wandb_key
local_rank = int(os.environ["LOCAL_RANK"]) if "LOCAL_RANK" in os.environ else 0
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
torch.distributed.init_process_group(backend="nccl")
log_dir = os.path.join(cfg.output_dir, cfg.exp_name)
experiment_ckpt_dir = os.path.join(log_dir, "checkpoints")
os.makedirs(experiment_ckpt_dir, exist_ok=True)
if local_rank == 0 and cfg.validation.wandb:
wandb.init(
project=cfg.wandb_project,
name=cfg.exp_name,
entity=cfg.wandb_entity,
dir=log_dir,
config=OmegaConf.to_container(cfg)
)
# init
if cfg.test:
from models.disco_audio import DiscoAudioModel
model = DiscoAudioModel.from_pretrained("/content/outputs/disco_audio/checkpoints/last").to(device)
else:
model = init_hf_class(cfg.model.name_pyfile, cfg.model.class_name, cfg.model).to(device)
model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)
# optimizer
optimizer_cls = torch.optim.Adam
optimizer = optimizer_cls(
filter(lambda p: p.requires_grad, model.parameters()),
lr=cfg.solver.learning_rate,
betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
weight_decay=cfg.solver.adam_weight_decay,
eps=cfg.solver.adam_epsilon
)
lr_scheduler = get_scheduler(
cfg.solver.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.solver.lr_warmup_steps * cfg.solver.gradient_accumulation_steps,
num_training_steps=cfg.solver.max_train_steps * cfg.solver.gradient_accumulation_steps
)
# dataset
train_dataset = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg, split='train')
test_dataset = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg, split='test')
train_sampler = get_weighted_sampler(train_dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
train_loader = DataLoader(train_dataset, batch_size=cfg.data.train_bs, sampler=train_sampler, drop_last=True, num_workers=8)
test_loader = DataLoader(test_dataset, batch_size=cfg.data.train_bs, sampler=test_sampler, drop_last=False, num_workers=8)
# resume
if cfg.resume_from_checkpoint:
checkpoint = torch.load(cfg.resume_from_checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler_state_dict"])
iteration = checkpoint["iteration"]
else:
iteration = 0
if cfg.test:
iteration = 0
max_epochs = (cfg.solver.max_train_steps // len(train_loader)) + (1 if cfg.solver.max_train_steps % len(train_loader) != 0 else 0)
start_epoch = iteration // len(train_loader)
start_step_in_epoch = iteration % len(train_loader)
fgd_evaluator = FGD(download_path="./emage_evaltools/")
bc_evaluator = BC(download_path="./emage_evaltools/", sigma=0.3, order=7)
l1div_evaluator= L1div()
loss_meters = {}
loss_meters_val = {}
best_fgd_val = np.inf
best_fgd_iteration_val= 0
best_fgd_test = np.inf
best_fgd_iteration_test = 0
# train loop
data_start = time.time()
for epoch in range(start_epoch, max_epochs):
# train_sampler.set_epoch(epoch)
pbar = tqdm(train_loader, leave=True)
for i, batch in enumerate(pbar):
# for correct resume, if the dataset is very large. since we fixed the seed, we can skip the data
if i < start_step_in_epoch:
iteration += 1
continue
# test
if iteration % cfg.validation.test_steps == 0 and local_rank == 0:
test_save_path = os.path.join(log_dir, f"test_{iteration}")
os.makedirs(test_save_path, exist_ok=True)
with torch.no_grad():
test_list, save_list = inference_fn(cfg.model, model, device, cfg.data.test_meta_paths, test_save_path)
if cfg.validation.evaluation:
metrics = evaluation_fn([True]*55, test_list, save_list, fgd_evaluator, bc_evaluator, l1div_evaluator, device)
if cfg.validation.visualization: visualization_fn(save_list, test_save_path, test_list, only_check_one=True)
if cfg.validation.evaluation: best_fgd_test, best_fgd_iteration_test = log_test(model, metrics, iteration, best_fgd_test, best_fgd_iteration_test, cfg, local_rank, experiment_ckpt_dir, test_save_path)
if cfg.test: return 0
# validation
if iteration % cfg.validation.validation_steps == 0:
loss_meters = {}
loss_meters_val = {}
fgd_evaluator.reset()
pbar_val = tqdm(test_loader, leave=True)
data_start_val = time.time()
for j, batch in enumerate(pbar_val):
data_time_val = time.time() - data_start_val
with torch.no_grad():
val_loss_dict = train_val_fn(cfg, batch, model, device, mode="val", fgd_evaluator=fgd_evaluator)
net_time_val = time.time() - data_start_val
val_loss_dict["fgd"] = fgd_evaluator.compute() if j == len(test_loader) - 1 else 0
log_train_val(cfg, val_loss_dict, local_rank, loss_meters_val, pbar_val, epoch, max_epochs, iteration, net_time_val, data_time_val, optimizer, "Val ")
data_start_val = time.time()
if cfg.debug and j > 1: break
if local_rank == 0:
best_fgd_val, best_fgd_iteration_val = save_last_and_best_ckpt(
model, optimizer, lr_scheduler, iteration, experiment_ckpt_dir, best_fgd_val, best_fgd_iteration_val, val_loss_dict["fgd"], lower_is_better=True, mertic_name="fgd")
# train
data_time = time.time() - data_start
loss_dict = train_val_fn(cfg, batch, model, device, mode="train", optimizer=optimizer, lr_scheduler=lr_scheduler)
net_time = time.time() - data_start - data_time
log_train_val(cfg, loss_dict, local_rank, loss_meters, pbar, epoch, max_epochs, iteration, net_time, data_time, optimizer, "Train")
data_start = time.time()
iteration += 1
start_step_in_epoch = 0
epoch += 1
if local_rank == 0 and cfg.validation.wandb:
wandb.finish()
torch.distributed.destroy_process_group()
# --------------------------------- utils fn here --------------------------------- #
def evaluation_fn(joint_mask, gt_list, pred_list, fgd_evaluator, bc_evaluator, l1_evaluator, device):
fgd_evaluator.reset()
bc_evaluator.reset()
l1_evaluator.reset()
# lvd_evaluator.reset()
# mse_evaluator.reset()
for test_file in tqdm(gt_list, desc="Evaluation"):
# only load selective joints
pred_file = [item for item in pred_list if item["video_id"] == test_file["video_id"]][0]
if not pred_file:
print(f"Missing prediction for {test_file['video_id']}")
continue
# print(test_file["motion_path"], pred_file["motion_path"])
gt_dict = beat_format_load(test_file["motion_path"], joint_mask)
pred_dict = beat_format_load(pred_file["motion_path"], joint_mask)
motion_gt = gt_dict["poses"]
motion_pred = pred_dict["poses"]
# expressions_gt = gt_dict["expressions"]
# expressions_pred = pred_dict["expressions"]
betas = gt_dict["betas"]
# motion_gt = recover_from_mask(motion_gt, joint_mask) # t1*165
# motion_pred = recover_from_mask(motion_pred, joint_mask) # t2*165
t = min(motion_gt.shape[0], motion_pred.shape[0])
motion_gt = motion_gt[:t]
motion_pred = motion_pred[:t]
# expressions_gt = expressions_gt[:t]
# expressions_pred = expressions_pred[:t]
# bc and l1 require position representation
motion_position_pred = get_motion_rep_numpy(motion_pred, device=device, betas=betas)["position"] # t*55*3
motion_position_pred = motion_position_pred.reshape(t, -1)
# ignore the start and end 2s, this may for beat dataset only
audio_beat = bc_evaluator.load_audio(test_file["audio_path"], t_start=2 * 16000, t_end=int((t-60)/30*16000))
motion_beat = bc_evaluator.load_motion(motion_position_pred, t_start=60, t_end=t-60, pose_fps=30, without_file=True)
bc_evaluator.compute(audio_beat, motion_beat, length=t-120, pose_fps=30)
# audio_beat = bc_evaluator.load_audio(test_file["audio_path"], t_start=0 * 16000, t_end=int((t-0)/30*16000))
# motion_beat = bc_evaluator.load_motion(motion_position_pred, t_start=0, t_end=t-0, pose_fps=30, without_file=True)
# bc_evaluator.compute(audio_beat, motion_beat, length=t-0, pose_fps=30)
l1_evaluator.compute(motion_position_pred)
# face_position_pred = get_motion_rep_numpy(motion_pred, device=device, expressions=expressions_pred, expression_only=True, betas=betas)["vertices"] # t -1
# face_position_gt = get_motion_rep_numpy(motion_gt, device=device, expressions=expressions_gt, expression_only=True, betas=betas)["vertices"]
# lvd_evaluator.compute(face_position_pred, face_position_gt)
# mse_evaluator.compute(face_position_pred, face_position_gt)
# fgd requires rotation 6d representaiton
motion_gt = torch.from_numpy(motion_gt).to(device).unsqueeze(0)
motion_pred = torch.from_numpy(motion_pred).to(device).unsqueeze(0)
motion_gt = rc.axis_angle_to_rotation_6d(motion_gt.reshape(1, t, 55, 3)).reshape(1, t, 55*6)
motion_pred = rc.axis_angle_to_rotation_6d(motion_pred.reshape(1, t, 55, 3)).reshape(1, t, 55*6)
fgd_evaluator.update(motion_pred.float(), motion_gt.float())
metrics = {}
metrics["fgd"] = fgd_evaluator.compute()
metrics["bc"] = bc_evaluator.avg()
metrics["l1"] = l1_evaluator.avg()
# metrics["lvd"] = lvd_evaluator.avg()
# metrics["mse"] = mse_evaluator.avg()
return metrics
def visualization_fn(pred_list, save_path, gt_list=None, only_check_one=True):
if gt_list is None: # single visualization
for i in range(len(pred_list)):
fast_render.render_one_sequence(
pred_list[i]["motion_path"],
save_path,
pred_list[i]["audio_path"],
model_folder="./evaluation/smplx_models/",
)
if only_check_one: break
else: # paired visualization, pad the translation
for i in range(len(pred_list)):
npz_pred = np.load(pred_list[i]["motion_path"], allow_pickle=True)
gt_file = [item for item in gt_list if item["video_id"] == pred_list[i]["video_id"]][0]
if not gt_file:
print(f"Missing prediction for {pred_list[i]['video_id']}")
continue
npz_gt = np.load(gt_file["motion_path"], allow_pickle=True)
t = npz_gt["poses"].shape[0]
np.savez(
os.path.join(save_path, f"{pred_list[i]['video_id']}_transpad.npz"),
betas=npz_pred['betas'][:t],
poses=npz_pred['poses'][:t],
expressions=npz_pred['expressions'][:t],
trans=npz_pred["trans"][:t],
model='smplx2020',
gender='neutral',
mocap_frame_rate=30,
)
fast_render.render_one_sequence(
os.path.join(save_path, f"{pred_list[i]['video_id']}_transpad.npz"),
gt_file["motion_path"],
save_path,
pred_list[i]["audio_path"],
model_folder="./evaluation/smplx_models/",
)
if only_check_one: break
def log_test(model, metrics, iteration, best_mertics, best_iteration, cfg, local_rank, experiment_ckpt_dir, video_save_path=None):
if local_rank == 0:
print(f"\n Test Results at iteration {iteration}:")
for key, value in metrics.items():
print(f" {key}: {value:.10f}")
if cfg.validation.wandb:
for key, value in metrics.items():
wandb.log({f"test/{key}": value}, step=iteration)
if cfg.validation.wandb and cfg.validation.visualization:
videos_to_log = []
for filename in os.listdir(video_save_path):
if filename.endswith(".mp4"):
videos_to_log.append(wandb.Video(os.path.join(video_save_path, filename)))
if videos_to_log:
wandb.log({"test/videos": videos_to_log}, step=iteration)
if metrics["fgd"] < best_mertics:
best_mertics = metrics["fgd"]
best_iteration = iteration
model.module.save_pretrained(os.path.join(experiment_ckpt_dir, "test_best"))
# print(metrics, best_mertics, best_iteration)
message = f"Current Test FGD: {metrics['fgd']:.4f} (Best: {best_mertics:.4f} at iteration {best_iteration})"
log_metric_with_box(message)
return best_mertics, best_iteration
def log_metric_with_box(message):
box_width = len(message) + 2
border = "-" * box_width
print(f"\n{border}")
print(f"|{message}|")
print(f"{border}\n")
def log_train_val(cfg, loss_dict, local_rank, loss_meters, pbar, epoch, max_epochs, iteration, net_time, data_time, optimizer, ptype="Train"):
new_loss_dict = {}
for k, v in loss_dict.items():
if "fgd" in k: continue
v_cpu = torch.as_tensor(v).float().cpu().item()
if k not in loss_meters:
loss_meters[k] = {"sum":0,"count":0}
loss_meters[k]["sum"] += v_cpu
loss_meters[k]["count"] += 1
new_loss_dict[k] = v_cpu
mem_used = torch.cuda.memory_reserved() / 1E9
lr = optimizer.param_groups[0]["lr"]
loss_str = " ".join([f"{k}: {new_loss_dict[k]:.4f}({loss_meters[k]['sum']/loss_meters[k]['count']:.4f})" for k in new_loss_dict])
desc = f"{ptype}: Epoch[{epoch}/{max_epochs}] Iter[{iteration}] {loss_str} lr: {lr:.2E} data_time: {data_time:.3f} net_time: {net_time:.3f} mem: {mem_used:.2f}GB"
pbar.set_description(desc)
pbar.bar_format = "{desc} {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]"
if cfg.validation.wandb and local_rank == 0:
for k, v in new_loss_dict.items():
wandb.log({f"loss/{ptype}/{k}": v}, step=iteration)
def save_last_and_best_ckpt(model, optimizer, lr_scheduler, iteration, save_dir, previous_best, best_iteration, current, lower_is_better=True, mertic_name="fgd"):
checkpoint = {
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"lr_scheduler_state_dict": lr_scheduler.state_dict(),
"iteration": iteration,
}
torch.save(checkpoint, os.path.join(save_dir, "last.bin"))
model.module.save_pretrained(os.path.join(save_dir, "last"))
if (lower_is_better and current < previous_best) or (not lower_is_better and current > previous_best):
previous_best = current
best_iteration = iteration
shutil.copy(os.path.join(save_dir, "last.bin"), os.path.join(save_dir, "best.bin"))
model.module.save_pretrained(os.path.join(save_dir, "best"))
message = f"Current interation {iteration} {mertic_name}: {current:.4f} (Best: {previous_best:.4f} at iteration {best_iteration})"
log_metric_with_box(message)
return previous_best, best_iteration
def init_hf_class(module_name, class_name, config, **kwargs):
module = importlib.import_module(module_name)
model_class = getattr(module, class_name)
config_class = model_class.config_class
config = config_class(config_obj=config)
instance = model_class(config, **kwargs)
return instance
def init_class(module_name, class_name, config, **kwargs):
module = importlib.import_module(module_name)
model_class = getattr(module, class_name)
instance = model_class(config, **kwargs)
return instance
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
def init_env():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/train/stage2.yaml")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--wandb", action="store_true")
parser.add_argument("--visualization", action="store_true")
parser.add_argument("--evaluation", action="store_true")
parser.add_argument("--test", action="store_true")
parser.add_argument('overrides', nargs=argparse.REMAINDER)
args = parser.parse_args()
config = OmegaConf.load(args.config)
config.exp_name = os.path.splitext(os.path.basename(args.config))[0]
if args.overrides: config = OmegaConf.merge(config, OmegaConf.from_dotlist(args.overrides))
if args.debug:
config.wandb_project = "debug"
config.exp_name = "debug"
config.solver.max_train_steps = 4
else:
run_time = datetime.now().strftime("%Y%m%d-%H%M")
config.exp_name = config.exp_name + "_" + run_time
if args.wandb:
config.validation.wandb = True
if args.visualization:
config.validation.visualization = True
if args.evaluation:
config.validation.evaluation = True
if args.test:
config.test = True
save_dir = os.path.join(config.output_dir, config.exp_name)
os.makedirs(save_dir, exist_ok=True)
sanity_check_dir = os.path.join(save_dir, 'sanity_check')
os.makedirs(sanity_check_dir, exist_ok=True)
with open(os.path.join(sanity_check_dir, f'{config.exp_name}.yaml'), 'w') as f:
OmegaConf.save(config, f)
current_dir = Path.cwd()
for py_file in current_dir.rglob('*.py'):
dest_path = Path(sanity_check_dir) / py_file.relative_to(current_dir)
dest_path.parent.mkdir(parents=True, exist_ok=True)
shutil.copy(py_file, dest_path)
return config
if __name__ == "__main__":
config = init_env()
main(config) |