File size: 25,632 Bytes
b03a8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import os
import shutil
import argparse
import random
import numpy as np
from datetime import datetime
from tqdm import tqdm
import importlib
import copy
import librosa
from pathlib import Path
import json
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, WeightedRandomSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import wandb

from diffusers.optimization import get_scheduler
from omegaconf import OmegaConf

from emage_evaltools.mertic import FGD, BC, L1div
from emage_utils.motion_io import beat_format_load, beat_format_save, MASK_DICT, recover_from_mask, recover_from_mask_ts
import emage_utils.rotation_conversions as rc
from emage_utils import fast_render
from emage_utils.motion_rep_transfer import get_motion_rep_numpy


# ---------------------------------  loss here --------------------------------- #
class GeodesicLoss(nn.Module):
    def __init__(self):
        super(GeodesicLoss, self).__init__()
    def compute_geodesic_distance(self, m1, m2):
        m1 = m1.reshape(-1, 3, 3)
        m2 = m2.reshape(-1, 3, 3)
        m = torch.bmm(m1, m2.transpose(1, 2))
        cos = (m[:, 0, 0] + m[:, 1, 1] + m[:, 2, 2] - 1) / 2
        cos = torch.clamp(cos, min=-1 + 1E-6, max=1-1E-6)
        theta = torch.acos(cos)
        return theta
    def __call__(self, m1, m2, reduction='mean'):
        loss = self.compute_geodesic_distance(m1, m2)
        if reduction == 'mean':
            return loss.mean()
        elif reduction == 'none':
            return loss
        else:
            raise RuntimeError

GeodesicLossFn = GeodesicLoss()

def contrastive_loss(features, labels, margin=1.0):
    # features: [bs, n, c]
    # labels: [bs, 1]
    # first, reduce features along time (or sequence) dimension
    feats = features.mean(dim=1)  # [bs, c]
    lbs = labels.squeeze(-1)      # [bs]

    # compute pairwise distances
    dist = torch.cdist(feats, feats, p=2)  # [bs, bs]
    pos_mask = (lbs.unsqueeze(0) == lbs.unsqueeze(1)).float()  # [bs, bs]

    # positive pairs: distance should be small
    pos_loss = pos_mask * dist

    # negative pairs: distance should be large
    # margin-based loss
    neg_loss = (1.0 - pos_mask) * F.relu(margin - dist)

    return pos_loss.mean() + neg_loss.mean()



def get_weighted_sampler(dataset):
    # Collect labels
    labels = []
    for item in dataset.data_list:
        labels.append(item["content_label"])
    labels = np.array(labels)
    class_counts = np.bincount(labels)
    weights = 1.0 / class_counts[labels] 
    sampler = WeightedRandomSampler(
        weights=weights,
        num_samples=len(weights),  # Usually same as dataset size
        replacement=True          # Typically True for weighted sampling
    )
    return sampler


# ---------------------------------  train,val,test fn here --------------------------------- #
def inference_fn(cfg, model, device, test_path, save_path):
    actual_model = model.module if isinstance(model, torch.nn.parallel.DistributedDataParallel) else model
    actual_model.eval()
    torch.set_grad_enabled(False)
    test_list = []
    for data_meta_path in test_path:
        test_list.extend(json.load(open(data_meta_path, "r")))
    test_list = [item for item in test_list if item.get("mode") == "test"]
    seen_ids = set()
    test_list = [item for item in test_list if not (item["video_id"] in seen_ids or seen_ids.add(item["video_id"]))]

    save_list = []
    start_time = time.time()
    total_length = 0
    for test_file in tqdm(test_list, desc="Testing"):
        audio, _ = librosa.load(test_file["audio_path"], sr=cfg.audio_sr)
        audio = torch.from_numpy(audio).to(device).unsqueeze(0)
        speaker_id = torch.zeros(1,1).to(device).long()
        motion_pred = actual_model(audio, speaker_id, seed_frames=4, seed_motion=None)["motion_axis_angle"]
        t = motion_pred.shape[1]
        motion_pred = motion_pred.cpu().numpy().reshape(t, -1)
        beat_format_save(os.path.join(save_path, f"{test_file['video_id']}_output.npz"), motion_pred, upsample=30//cfg.pose_fps)
        save_list.append(
            {
                "audio_path": test_file["audio_path"],
                "motion_path": os.path.join(save_path, f"{test_file['video_id']}_output.npz"),
                "video_id": test_file["video_id"],
            }
        )
        total_length+=t
    time_cost = time.time() - start_time
    print(f"\n cost {time_cost:.2f} seconds to generate {total_length / cfg.pose_fps:.2f} seconds of motion")
    return test_list, save_list


def train_val_fn(cfg, batch, model, device, mode="train", optimizer=None, lr_scheduler=None, fgd_evaluator=None):
    model.train() if mode == "train" else model.eval()
    torch.set_grad_enabled(mode == "train")
    joint_mask = MASK_DICT[cfg.model.joint_mask]
    if mode == "train":
        optimizer.zero_grad()
    motion_gt = batch["motion"].to(device)
    audio = batch["audio"].to(device)
    rhythm = batch["rhythm_label"].to(device)
    content = batch["content_label"].to(device)

    bs, t, jc = motion_gt.shape
    j = jc // 3
    speaker_id = torch.zeros(bs,1).to(device).long()
    motion_gt = rc.axis_angle_to_rotation_6d(motion_gt.reshape(bs,t,j,3)).reshape(bs, t, j*6)
    all_pred = model(audio, speaker_id, seed_frames=4, seed_motion=motion_gt, return_axis_angle=False)

    motion_pred = all_pred["motion"]
    motion_pred = rc.rotation_6d_to_matrix(motion_pred.reshape(bs,t,j,6))
    motion_gt = rc.rotation_6d_to_matrix(motion_gt.reshape(bs,t,j,6))
    loss = GeodesicLossFn(motion_pred, motion_gt)
    loss_dict = {"loss": loss}

    # feature disentanglement loss
    rhythm_fea = all_pred["audio_fea_r"]
    content_fea = all_pred["audio_fea_c"]
    # if two features are the same rhythm class, the distance should be small, other wise large
    rhythm_fea = F.normalize(rhythm_fea, dim=1)
    content_fea = F.normalize(content_fea, dim=1)
    rhythm_disentangle_loss = contrastive_loss(rhythm_fea, rhythm)
    content_disentangle_loss = contrastive_loss(content_fea, content)
    loss_dict["rhythm"] = rhythm_disentangle_loss
    loss_dict["content"] = content_disentangle_loss

    all_loss = sum(loss_dict.values())
    loss_dict["all_loss"] = all_loss

    if mode == "train":
        if cfg.solver.max_grad_norm > 0:
            torch.nn.utils.clip_grad_norm_(model.parameters(), cfg.solver.max_grad_norm)
        all_loss.backward()
        optimizer.step()
        lr_scheduler.step()

    if mode == "val":
        motion_pred = rc.matrix_to_rotation_6d(motion_pred).reshape(bs, t, j*6)
        motion_gt = rc.matrix_to_rotation_6d(motion_gt).reshape(bs, t, j*6)
        padded_pred = recover_from_mask_ts(motion_pred, joint_mask)
        padded_gt = recover_from_mask_ts(motion_gt, joint_mask)
        fgd_evaluator.update(padded_pred, padded_gt)
    return loss_dict


# ---------------------------------  main train loop here --------------------------------- #
def main(cfg):
    seed_everything(cfg.seed)
    os.environ["WANDB_API_KEY"] = cfg.wandb_key
    local_rank = int(os.environ["LOCAL_RANK"]) if "LOCAL_RANK" in os.environ else 0
    torch.cuda.set_device(local_rank)
    device = torch.device("cuda", local_rank)
    torch.distributed.init_process_group(backend="nccl")
    log_dir = os.path.join(cfg.output_dir, cfg.exp_name)
    experiment_ckpt_dir = os.path.join(log_dir, "checkpoints")
    os.makedirs(experiment_ckpt_dir, exist_ok=True)

    if local_rank == 0 and cfg.validation.wandb:  
        wandb.init(
            project=cfg.wandb_project,
            name=cfg.exp_name,
            entity=cfg.wandb_entity,
            dir=log_dir,
            config=OmegaConf.to_container(cfg)
        )

    # init 
    if cfg.test:
        from models.disco_audio import DiscoAudioModel
        model = DiscoAudioModel.from_pretrained("/content/outputs/disco_audio/checkpoints/last").to(device)
    else:
        model = init_hf_class(cfg.model.name_pyfile, cfg.model.class_name, cfg.model).to(device)
    model = DDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True)

    # optimizer
    optimizer_cls = torch.optim.Adam
    optimizer = optimizer_cls(
        filter(lambda p: p.requires_grad, model.parameters()),
        lr=cfg.solver.learning_rate,
        betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
        weight_decay=cfg.solver.adam_weight_decay,
        eps=cfg.solver.adam_epsilon
    )
    lr_scheduler = get_scheduler(
        cfg.solver.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=cfg.solver.lr_warmup_steps * cfg.solver.gradient_accumulation_steps,
        num_training_steps=cfg.solver.max_train_steps * cfg.solver.gradient_accumulation_steps
    )

    # dataset
    train_dataset = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg, split='train')
    test_dataset = init_class(cfg.data.name_pyfile, cfg.data.class_name, cfg, split='test')
    train_sampler = get_weighted_sampler(train_dataset)
    test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
    train_loader = DataLoader(train_dataset, batch_size=cfg.data.train_bs, sampler=train_sampler, drop_last=True, num_workers=8)
    test_loader = DataLoader(test_dataset, batch_size=cfg.data.train_bs, sampler=test_sampler, drop_last=False, num_workers=8)

    # resume
    if cfg.resume_from_checkpoint:
        checkpoint = torch.load(cfg.resume_from_checkpoint, map_location="cpu")
        model.load_state_dict(checkpoint["model_state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
        lr_scheduler.load_state_dict(checkpoint["lr_scheduler_state_dict"])
        iteration = checkpoint["iteration"]
    else:  
        iteration = 0
    if cfg.test:
        iteration = 0

    max_epochs = (cfg.solver.max_train_steps // len(train_loader)) + (1 if cfg.solver.max_train_steps % len(train_loader) != 0 else 0)
    start_epoch = iteration // len(train_loader)
    start_step_in_epoch = iteration % len(train_loader)
    fgd_evaluator = FGD(download_path="./emage_evaltools/")
    bc_evaluator = BC(download_path="./emage_evaltools/", sigma=0.3, order=7)
    l1div_evaluator= L1div()
    loss_meters = {}
    loss_meters_val = {}
    best_fgd_val = np.inf
    best_fgd_iteration_val= 0
    best_fgd_test = np.inf
    best_fgd_iteration_test = 0
    
    # train loop
    data_start = time.time()
    for epoch in range(start_epoch, max_epochs):
        # train_sampler.set_epoch(epoch)
        pbar = tqdm(train_loader, leave=True)
        for i, batch in enumerate(pbar):
            # for correct resume, if the dataset is very large. since we fixed the seed, we can skip the data
            if i < start_step_in_epoch: 
              iteration += 1
              continue
            
            # test 
            if iteration % cfg.validation.test_steps == 0 and local_rank == 0:
                test_save_path = os.path.join(log_dir, f"test_{iteration}")
                os.makedirs(test_save_path, exist_ok=True)
                with torch.no_grad():
                    test_list, save_list = inference_fn(cfg.model, model, device, cfg.data.test_meta_paths, test_save_path)
                if cfg.validation.evaluation:
                    metrics = evaluation_fn([True]*55, test_list, save_list, fgd_evaluator, bc_evaluator, l1div_evaluator, device)
                if cfg.validation.visualization: visualization_fn(save_list, test_save_path, test_list, only_check_one=True)
                if cfg.validation.evaluation: best_fgd_test, best_fgd_iteration_test =  log_test(model, metrics, iteration, best_fgd_test, best_fgd_iteration_test, cfg, local_rank, experiment_ckpt_dir, test_save_path)
                if cfg.test: return 0

            # validation
            if iteration % cfg.validation.validation_steps == 0:
                loss_meters = {}
                loss_meters_val = {}
                fgd_evaluator.reset()
                pbar_val = tqdm(test_loader, leave=True)

                data_start_val = time.time()  
                for j, batch in enumerate(pbar_val):
                    data_time_val = time.time() - data_start_val
                    with torch.no_grad():
                        val_loss_dict = train_val_fn(cfg, batch, model, device, mode="val", fgd_evaluator=fgd_evaluator)
                    net_time_val = time.time() - data_start_val
                    val_loss_dict["fgd"] = fgd_evaluator.compute() if j == len(test_loader) - 1 else 0
                    log_train_val(cfg, val_loss_dict, local_rank, loss_meters_val, pbar_val, epoch, max_epochs, iteration, net_time_val, data_time_val, optimizer, "Val  ")
                    data_start_val = time.time()
                    if cfg.debug and j > 1: break

                if local_rank == 0:
                    best_fgd_val, best_fgd_iteration_val = save_last_and_best_ckpt(
                        model, optimizer, lr_scheduler, iteration, experiment_ckpt_dir, best_fgd_val, best_fgd_iteration_val, val_loss_dict["fgd"], lower_is_better=True, mertic_name="fgd")

            # train
            data_time = time.time() - data_start
            loss_dict = train_val_fn(cfg, batch, model, device, mode="train", optimizer=optimizer, lr_scheduler=lr_scheduler)
            net_time = time.time() - data_start - data_time
            log_train_val(cfg, loss_dict, local_rank, loss_meters, pbar, epoch, max_epochs, iteration, net_time, data_time, optimizer, "Train")
            data_start = time.time()

            iteration += 1
        start_step_in_epoch = 0
        epoch += 1

    if local_rank == 0 and cfg.validation.wandb:
        wandb.finish()
    torch.distributed.destroy_process_group()


# ---------------------------------  utils fn here --------------------------------- #
def evaluation_fn(joint_mask, gt_list, pred_list, fgd_evaluator, bc_evaluator, l1_evaluator, device):
    fgd_evaluator.reset()
    bc_evaluator.reset()
    l1_evaluator.reset()
    # lvd_evaluator.reset()
    # mse_evaluator.reset()

    for test_file in tqdm(gt_list, desc="Evaluation"):
        # only load selective joints
        pred_file = [item for item in pred_list if item["video_id"] == test_file["video_id"]][0]
        if not pred_file:
            print(f"Missing prediction for {test_file['video_id']}")
            continue
        # print(test_file["motion_path"], pred_file["motion_path"])
        gt_dict = beat_format_load(test_file["motion_path"], joint_mask)
        pred_dict = beat_format_load(pred_file["motion_path"], joint_mask)

        motion_gt = gt_dict["poses"]
        motion_pred = pred_dict["poses"]
        # expressions_gt = gt_dict["expressions"]
        # expressions_pred = pred_dict["expressions"]
        betas = gt_dict["betas"]
        # motion_gt = recover_from_mask(motion_gt, joint_mask) # t1*165
        # motion_pred = recover_from_mask(motion_pred, joint_mask) # t2*165
    
        t = min(motion_gt.shape[0], motion_pred.shape[0])
        motion_gt = motion_gt[:t]
        motion_pred = motion_pred[:t]
        # expressions_gt = expressions_gt[:t]
        # expressions_pred = expressions_pred[:t]
       
        # bc and l1 require position representation
        motion_position_pred = get_motion_rep_numpy(motion_pred, device=device, betas=betas)["position"] # t*55*3
        motion_position_pred = motion_position_pred.reshape(t, -1)
        # ignore the start and end 2s, this may for beat dataset only
        audio_beat = bc_evaluator.load_audio(test_file["audio_path"], t_start=2 * 16000, t_end=int((t-60)/30*16000))
        motion_beat = bc_evaluator.load_motion(motion_position_pred, t_start=60, t_end=t-60, pose_fps=30, without_file=True)
        bc_evaluator.compute(audio_beat, motion_beat, length=t-120, pose_fps=30)
        # audio_beat = bc_evaluator.load_audio(test_file["audio_path"], t_start=0 * 16000, t_end=int((t-0)/30*16000))
        # motion_beat = bc_evaluator.load_motion(motion_position_pred, t_start=0, t_end=t-0, pose_fps=30, without_file=True)
        # bc_evaluator.compute(audio_beat, motion_beat, length=t-0, pose_fps=30)

        l1_evaluator.compute(motion_position_pred)
       
        # face_position_pred = get_motion_rep_numpy(motion_pred, device=device, expressions=expressions_pred, expression_only=True, betas=betas)["vertices"] # t -1
        # face_position_gt = get_motion_rep_numpy(motion_gt, device=device, expressions=expressions_gt, expression_only=True, betas=betas)["vertices"]
        # lvd_evaluator.compute(face_position_pred, face_position_gt)
        # mse_evaluator.compute(face_position_pred, face_position_gt)
       
        # fgd requires rotation 6d representaiton
        motion_gt = torch.from_numpy(motion_gt).to(device).unsqueeze(0)
        motion_pred = torch.from_numpy(motion_pred).to(device).unsqueeze(0)
        motion_gt = rc.axis_angle_to_rotation_6d(motion_gt.reshape(1, t, 55, 3)).reshape(1, t, 55*6)
        motion_pred = rc.axis_angle_to_rotation_6d(motion_pred.reshape(1, t, 55, 3)).reshape(1, t, 55*6)
        fgd_evaluator.update(motion_pred.float(), motion_gt.float())
       
    metrics = {}
    metrics["fgd"] = fgd_evaluator.compute()
    metrics["bc"] = bc_evaluator.avg()
    metrics["l1"] = l1_evaluator.avg()
    # metrics["lvd"] = lvd_evaluator.avg()
    # metrics["mse"] = mse_evaluator.avg()
    return metrics

def visualization_fn(pred_list, save_path, gt_list=None, only_check_one=True):
    if gt_list is None: # single visualization
        for i in range(len(pred_list)):
            fast_render.render_one_sequence(
                pred_list[i]["motion_path"],
                save_path,
                pred_list[i]["audio_path"],
                model_folder="./evaluation/smplx_models/",
            )
            if only_check_one: break
    else: # paired visualization, pad the translation
        for i in range(len(pred_list)):
            npz_pred = np.load(pred_list[i]["motion_path"], allow_pickle=True)
            gt_file = [item for item in gt_list if item["video_id"] == pred_list[i]["video_id"]][0]
            if not gt_file:
                print(f"Missing prediction for {pred_list[i]['video_id']}")
                continue
            npz_gt = np.load(gt_file["motion_path"], allow_pickle=True)
            t  = npz_gt["poses"].shape[0]
            np.savez(
                os.path.join(save_path, f"{pred_list[i]['video_id']}_transpad.npz"),
                betas=npz_pred['betas'][:t],
                poses=npz_pred['poses'][:t],
                expressions=npz_pred['expressions'][:t],
                trans=npz_pred["trans"][:t],
                model='smplx2020',
                gender='neutral',
                mocap_frame_rate=30,
            )
            fast_render.render_one_sequence(
                os.path.join(save_path, f"{pred_list[i]['video_id']}_transpad.npz"),
                gt_file["motion_path"],
                save_path,
                pred_list[i]["audio_path"],
                model_folder="./evaluation/smplx_models/",
            )
            if only_check_one: break
     
def log_test(model, metrics, iteration, best_mertics, best_iteration, cfg, local_rank, experiment_ckpt_dir, video_save_path=None):
    if local_rank == 0:
        print(f"\n Test Results at iteration {iteration}:")
        for key, value in metrics.items():
            print(f"  {key}: {value:.10f}")
        if cfg.validation.wandb:
            for key, value in metrics.items():
                wandb.log({f"test/{key}": value}, step=iteration)
        if cfg.validation.wandb and cfg.validation.visualization:
            videos_to_log = []
            for filename in os.listdir(video_save_path):
                if filename.endswith(".mp4"):
                    videos_to_log.append(wandb.Video(os.path.join(video_save_path, filename)))
            if videos_to_log:
                wandb.log({"test/videos": videos_to_log}, step=iteration)
        if metrics["fgd"] < best_mertics:
            best_mertics = metrics["fgd"]
            best_iteration = iteration
            model.module.save_pretrained(os.path.join(experiment_ckpt_dir, "test_best"))
        # print(metrics, best_mertics, best_iteration)
        message = f"Current Test FGD: {metrics['fgd']:.4f} (Best: {best_mertics:.4f} at iteration {best_iteration})"
        log_metric_with_box(message)
    return best_mertics, best_iteration

def log_metric_with_box(message):
    box_width = len(message) + 2
    border = "-" * box_width
    print(f"\n{border}")
    print(f"|{message}|")
    print(f"{border}\n")

def log_train_val(cfg, loss_dict, local_rank, loss_meters, pbar, epoch, max_epochs, iteration, net_time, data_time, optimizer, ptype="Train"):
    new_loss_dict = {}
    for k, v in loss_dict.items():
        if "fgd" in k: continue
        v_cpu = torch.as_tensor(v).float().cpu().item()
        if k not in loss_meters:
            loss_meters[k] = {"sum":0,"count":0}
        loss_meters[k]["sum"] += v_cpu
        loss_meters[k]["count"] += 1
        new_loss_dict[k] = v_cpu
    mem_used = torch.cuda.memory_reserved() / 1E9
    lr = optimizer.param_groups[0]["lr"]
    loss_str = " ".join([f"{k}: {new_loss_dict[k]:.4f}({loss_meters[k]['sum']/loss_meters[k]['count']:.4f})" for k in new_loss_dict])
    desc = f"{ptype}: Epoch[{epoch}/{max_epochs}] Iter[{iteration}] {loss_str} lr: {lr:.2E} data_time: {data_time:.3f} net_time: {net_time:.3f} mem: {mem_used:.2f}GB"
    pbar.set_description(desc)
    pbar.bar_format = "{desc} {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]"
    if cfg.validation.wandb and local_rank == 0:
        for k, v in new_loss_dict.items():
            wandb.log({f"loss/{ptype}/{k}": v}, step=iteration)

def save_last_and_best_ckpt(model, optimizer, lr_scheduler, iteration, save_dir, previous_best, best_iteration, current, lower_is_better=True, mertic_name="fgd"):
    checkpoint = {
            "model_state_dict": model.state_dict(),
            "optimizer_state_dict": optimizer.state_dict(),
            "lr_scheduler_state_dict": lr_scheduler.state_dict(),
            "iteration": iteration,
        }
    torch.save(checkpoint, os.path.join(save_dir, "last.bin"))
    model.module.save_pretrained(os.path.join(save_dir, "last"))
    if (lower_is_better and current < previous_best) or (not lower_is_better and current > previous_best):
        previous_best = current
        best_iteration = iteration
        shutil.copy(os.path.join(save_dir, "last.bin"), os.path.join(save_dir, "best.bin"))
        model.module.save_pretrained(os.path.join(save_dir, "best"))
    message = f"Current interation {iteration} {mertic_name}: {current:.4f} (Best: {previous_best:.4f} at iteration {best_iteration})"
    log_metric_with_box(message)
    return previous_best, best_iteration

def init_hf_class(module_name, class_name, config, **kwargs):
    module = importlib.import_module(module_name)
    model_class = getattr(module, class_name)
    config_class = model_class.config_class
    config = config_class(config_obj=config)
    instance = model_class(config, **kwargs)
    return instance

def init_class(module_name, class_name, config, **kwargs):
    module = importlib.import_module(module_name)
    model_class = getattr(module, class_name)
    instance = model_class(config, **kwargs)
    return instance

def seed_everything(seed):
    os.environ['PYTHONHASHSEED'] = str(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.enabled = True

def init_env():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/train/stage2.yaml")
    parser.add_argument("--debug", action="store_true")
    parser.add_argument("--wandb", action="store_true")
    parser.add_argument("--visualization", action="store_true")
    parser.add_argument("--evaluation", action="store_true")
    parser.add_argument("--test", action="store_true")
    parser.add_argument('overrides', nargs=argparse.REMAINDER)
    args = parser.parse_args()
    config = OmegaConf.load(args.config)
    config.exp_name = os.path.splitext(os.path.basename(args.config))[0]

    if args.overrides: config = OmegaConf.merge(config, OmegaConf.from_dotlist(args.overrides))
    if args.debug:
        config.wandb_project = "debug"
        config.exp_name = "debug"
        config.solver.max_train_steps = 4
    else:
        run_time = datetime.now().strftime("%Y%m%d-%H%M")
        config.exp_name = config.exp_name + "_" + run_time
    if args.wandb:
        config.validation.wandb = True
    if args.visualization:
        config.validation.visualization = True
    if args.evaluation:
        config.validation.evaluation = True
    if args.test:
        config.test = True
    save_dir = os.path.join(config.output_dir, config.exp_name)
    os.makedirs(save_dir, exist_ok=True)
    sanity_check_dir = os.path.join(save_dir, 'sanity_check')
    os.makedirs(sanity_check_dir, exist_ok=True)
    with open(os.path.join(sanity_check_dir, f'{config.exp_name}.yaml'), 'w') as f:
        OmegaConf.save(config, f)
    current_dir = Path.cwd()
    for py_file in current_dir.rglob('*.py'):
        dest_path = Path(sanity_check_dir) / py_file.relative_to(current_dir)
        dest_path.parent.mkdir(parents=True, exist_ok=True)
        shutil.copy(py_file, dest_path)
    return config

if __name__ == "__main__":
    config = init_env()
    main(config)