Spaces:
Runtime error
Runtime error
""" | |
Inference code of music style transfer | |
of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects" | |
Process : converts the mastering style of the input music recording to that of the refernce music. | |
files inside the target directory should be organized as follow | |
"path_to_data_directory"/"song_name_#1"/input.wav | |
"path_to_data_directory"/"song_name_#1"/reference.wav | |
... | |
"path_to_data_directory"/"song_name_#n"/input.wav | |
"path_to_data_directory"/"song_name_#n"/reference.wav | |
where the 'input' and 'reference' should share the same names. | |
""" | |
import numpy as np | |
from glob import glob | |
import os | |
import torch | |
import sys | |
currentdir = os.path.dirname(os.path.realpath(__file__)) | |
sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer")) | |
from networks import FXencoder, TCNModel | |
from data_loader import * | |
import librosa | |
class Mastering_Style_Transfer_Inference: | |
def __init__(self, args, trained_w_ddp=True): | |
if torch.cuda.is_available(): | |
self.device = torch.device("cuda:0") | |
else: | |
self.device = torch.device("cpu") | |
# inference computational hyperparameters | |
self.args = args | |
self.segment_length = args.segment_length | |
self.batch_size = args.batch_size | |
self.sample_rate = 44100 # sampling rate should be 44100 | |
self.time_in_seconds = int(args.segment_length // self.sample_rate) | |
# directory configuration | |
self.output_dir = args.target_dir if args.output_dir==None else args.output_dir | |
self.target_dir = args.target_dir | |
# load model and its checkpoint weights | |
self.models = {} | |
self.models['effects_encoder'] = FXencoder(args.cfg_encoder).to(self.device) | |
self.models['mastering_converter'] = TCNModel(nparams=args.cfg_converter["condition_dimension"], \ | |
ninputs=2, \ | |
noutputs=2, \ | |
nblocks=args.cfg_converter["nblocks"], \ | |
dilation_growth=args.cfg_converter["dilation_growth"], \ | |
kernel_size=args.cfg_converter["kernel_size"], \ | |
channel_width=args.cfg_converter["channel_width"], \ | |
stack_size=args.cfg_converter["stack_size"], \ | |
cond_dim=args.cfg_converter["condition_dimension"], \ | |
causal=args.cfg_converter["causal"]).to(self.device) | |
ckpt_paths = {'effects_encoder' : args.ckpt_path_enc, \ | |
'mastering_converter' : args.ckpt_path_conv} | |
# reload saved model weights | |
ddp = trained_w_ddp | |
self.reload_weights(ckpt_paths, ddp=ddp) | |
# load data loader for the inference procedure | |
inference_dataset = Song_Dataset_Inference(args) | |
self.data_loader = DataLoader(inference_dataset, \ | |
batch_size=1, \ | |
shuffle=False, \ | |
num_workers=args.workers, \ | |
drop_last=False) | |
''' check stem-wise result ''' | |
if not self.args.do_not_separate: | |
os.environ['MKL_THREADING_LAYER'] = 'GNU' | |
separate_file_names = [args.input_file_name, args.reference_file_name] | |
if self.args.interpolation: | |
separate_file_names.append(args.reference_file_name_2interpolate) | |
for cur_idx, cur_inf_dir in enumerate(sorted(glob(f"{args.target_dir}*/"))): | |
for cur_file_name in separate_file_names: | |
cur_sep_file_path = os.path.join(cur_inf_dir, cur_file_name+'.wav') | |
cur_sep_output_dir = os.path.join(cur_inf_dir, args.stem_level_directory_name) | |
if os.path.exists(os.path.join(cur_sep_output_dir, self.args.separation_model, cur_file_name, 'drums.wav')): | |
print(f'\talready separated current file : {cur_sep_file_path}') | |
else: | |
cur_cmd_line = f"demucs {cur_sep_file_path} -n {self.args.separation_model} -d {self.device} -o {cur_sep_output_dir}" | |
os.system(cur_cmd_line) | |
# reload model weights from the target checkpoint path | |
def reload_weights(self, ckpt_paths, ddp=True): | |
for cur_model_name in self.models.keys(): | |
checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device) | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() | |
for k, v in checkpoint["model"].items(): | |
# remove `module.` if the model was trained with DDP | |
name = k[7:] if ddp else k | |
new_state_dict[name] = v | |
# load params | |
self.models[cur_model_name].load_state_dict(new_state_dict) | |
print(f"---reloaded checkpoint weights : {cur_model_name} ---") | |
# Inference whole song | |
def inference(self, input_track_path, reference_track_path): | |
print("\n======= Start to inference music mixing style transfer =======") | |
# normalized input | |
output_name_tag = 'output' if self.args.normalize_input else 'output_notnormed' | |
input_aud = load_wav_segment(input_track_path) | |
reference_aud = load_wav_segment(reference_track_path) | |
# input_stems, reference_stems, dir_name | |
print(f"---inference file name : {dir_name[0]}---") | |
cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir) | |
os.makedirs(cur_out_dir, exist_ok=True) | |
''' stem-level inference ''' | |
inst_outputs = [] | |
for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments): | |
print(f'\t{cur_inst_name}...') | |
''' segmentize whole songs into batch ''' | |
if len(input_stems[0][cur_inst_idx][0]) > self.args.segment_length: | |
cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \ | |
dir_name[0], \ | |
segment_length=self.args.segment_length, \ | |
discard_last=False) | |
else: | |
cur_inst_input_stem = [input_stems[:, cur_inst_idx]] | |
if len(reference_stems[0][cur_inst_idx][0]) > self.args.segment_length*2: | |
cur_inst_reference_stem = self.batchwise_segmentization(reference_stems[0][cur_inst_idx], \ | |
dir_name[0], \ | |
segment_length=self.args.segment_length_ref, \ | |
discard_last=False) | |
else: | |
cur_inst_reference_stem = [reference_stems[:, cur_inst_idx]] | |
''' inference ''' | |
# first extract reference style embedding | |
infered_ref_data_list = [] | |
for cur_ref_data in cur_inst_reference_stem: | |
cur_ref_data = cur_ref_data.to(self.device) | |
# Effects Encoder inference | |
with torch.no_grad(): | |
self.models["effects_encoder"].eval() | |
reference_feature = self.models["effects_encoder"](cur_ref_data) | |
infered_ref_data_list.append(reference_feature) | |
# compute average value from the extracted exbeddings | |
infered_ref_data = torch.stack(infered_ref_data_list) | |
infered_ref_data_avg = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0) | |
# mixing style converter | |
infered_data_list = [] | |
for cur_data in cur_inst_input_stem: | |
cur_data = cur_data.to(self.device) | |
with torch.no_grad(): | |
self.models["mastering_converter"].eval() | |
infered_data = self.models["mastering_converter"](cur_data, infered_ref_data_avg.unsqueeze(0)) | |
infered_data_list.append(infered_data.cpu().detach()) | |
# combine back to whole song | |
for cur_idx, cur_batch_infered_data in enumerate(infered_data_list): | |
cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1) | |
fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1) | |
# final output of current instrument | |
fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy() | |
inst_outputs.append(fin_data_out_inst) | |
# save output of each instrument | |
if self.args.save_each_inst: | |
sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16') | |
# remix | |
fin_data_out_mix = sum(inst_outputs) | |
fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav") | |
sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16') | |
return fin_output_path | |
# Inference whole song | |
def inference_interpolation(self, ): | |
print("\n======= Start to inference interpolation examples =======") | |
# normalized input | |
output_name_tag = 'output_interpolation' if self.args.normalize_input else 'output_notnormed_interpolation' | |
for step, (input_stems, reference_stems_A, reference_stems_B, dir_name) in enumerate(self.data_loader): | |
print(f"---inference file name : {dir_name[0]}---") | |
cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir) | |
os.makedirs(cur_out_dir, exist_ok=True) | |
''' stem-level inference ''' | |
inst_outputs = [] | |
for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments): | |
print(f'\t{cur_inst_name}...') | |
''' segmentize whole song ''' | |
# segmentize input according to number of interpolating segments | |
interpolate_segment_length = input_stems[0][cur_inst_idx].shape[1] // self.args.interpolate_segments + 1 | |
cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \ | |
dir_name[0], \ | |
segment_length=interpolate_segment_length, \ | |
discard_last=False) | |
# batchwise segmentize 2 reference tracks | |
if len(reference_stems_A[0][cur_inst_idx][0]) > self.args.segment_length_ref: | |
cur_inst_reference_stem_A = self.batchwise_segmentization(reference_stems_A[0][cur_inst_idx], \ | |
dir_name[0], \ | |
segment_length=self.args.segment_length_ref, \ | |
discard_last=False) | |
else: | |
cur_inst_reference_stem_A = [reference_stems_A[:, cur_inst_idx]] | |
if len(reference_stems_B[0][cur_inst_idx][0]) > self.args.segment_length_ref: | |
cur_inst_reference_stem_B = self.batchwise_segmentization(reference_stems_B[0][cur_inst_idx], \ | |
dir_name[0], \ | |
segment_length=self.args.segment_length, \ | |
discard_last=False) | |
else: | |
cur_inst_reference_stem_B = [reference_stems_B[:, cur_inst_idx]] | |
''' inference ''' | |
# first extract reference style embeddings | |
# reference A | |
infered_ref_data_list = [] | |
for cur_ref_data in cur_inst_reference_stem_A: | |
cur_ref_data = cur_ref_data.to(self.device) | |
# Effects Encoder inference | |
with torch.no_grad(): | |
self.models["effects_encoder"].eval() | |
reference_feature = self.models["effects_encoder"](cur_ref_data) | |
infered_ref_data_list.append(reference_feature) | |
# compute average value from the extracted exbeddings | |
infered_ref_data = torch.stack(infered_ref_data_list) | |
infered_ref_data_avg_A = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0) | |
# reference B | |
infered_ref_data_list = [] | |
for cur_ref_data in cur_inst_reference_stem_B: | |
cur_ref_data = cur_ref_data.to(self.device) | |
# Effects Encoder inference | |
with torch.no_grad(): | |
self.models["effects_encoder"].eval() | |
reference_feature = self.models["effects_encoder"](cur_ref_data) | |
infered_ref_data_list.append(reference_feature) | |
# compute average value from the extracted exbeddings | |
infered_ref_data = torch.stack(infered_ref_data_list) | |
infered_ref_data_avg_B = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0) | |
# mixing style converter | |
infered_data_list = [] | |
for cur_idx, cur_data in enumerate(cur_inst_input_stem): | |
cur_data = cur_data.to(self.device) | |
# perform linear interpolation on embedding space | |
cur_weight = (self.args.interpolate_segments-1-cur_idx) / (self.args.interpolate_segments-1) | |
cur_ref_emb = cur_weight * infered_ref_data_avg_A + (1-cur_weight) * infered_ref_data_avg_B | |
with torch.no_grad(): | |
self.models["mastering_converter"].eval() | |
infered_data = self.models["mastering_converter"](cur_data, cur_ref_emb.unsqueeze(0)) | |
infered_data_list.append(infered_data.cpu().detach()) | |
# combine back to whole song | |
for cur_idx, cur_batch_infered_data in enumerate(infered_data_list): | |
cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1) | |
fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1) | |
# final output of current instrument | |
fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy() | |
inst_outputs.append(fin_data_out_inst) | |
# save output of each instrument | |
if self.args.save_each_inst: | |
sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16') | |
# remix | |
fin_data_out_mix = sum(inst_outputs) | |
fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav") | |
sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16') | |
return fin_output_path | |
# function that segmentize an entire song into batch | |
def batchwise_segmentization(self, target_song, song_name, segment_length, discard_last=False): | |
assert target_song.shape[-1] >= self.args.segment_length, \ | |
f"Error : Insufficient duration!\n\t \ | |
Target song's length is shorter than segment length.\n\t \ | |
Song name : {song_name}\n\t \ | |
Consider changing the 'segment_length' or song with sufficient duration" | |
# discard restovers (last segment) | |
if discard_last: | |
target_length = target_song.shape[-1] - target_song.shape[-1] % segment_length | |
target_song = target_song[:, :target_length] | |
# pad last segment | |
else: | |
pad_length = segment_length - target_song.shape[-1] % segment_length | |
target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1) | |
# segmentize according to the given segment_length | |
whole_batch_data = [] | |
batch_wise_data = [] | |
for cur_segment_idx in range(target_song.shape[-1]//segment_length): | |
batch_wise_data.append(target_song[..., cur_segment_idx*segment_length:(cur_segment_idx+1)*segment_length]) | |
if len(batch_wise_data)==self.args.batch_size: | |
whole_batch_data.append(torch.stack(batch_wise_data, dim=0)) | |
batch_wise_data = [] | |
if batch_wise_data: | |
whole_batch_data.append(torch.stack(batch_wise_data, dim=0)) | |
return whole_batch_data | |
def set_up_mastering(start_point_in_second=0, duration_in_second=30): | |
os.environ['MASTER_ADDR'] = '127.0.0.1' | |
os.environ["CUDA_VISIBLE_DEVICES"] = '0' | |
os.environ['MASTER_PORT'] = '8888' | |
def str2bool(v): | |
if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise argparse.ArgumentTypeError('Boolean value expected.') | |
''' Configurations for music mixing style transfer ''' | |
currentdir = os.path.dirname(os.path.realpath(__file__)) | |
default_ckpt_path_enc = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt') | |
default_ckpt_path_conv = os.path.join(os.path.dirname(currentdir), 'weights', 'MixFXcloner_ps.pt') | |
default_ckpt_path_master = os.path.join(os.path.dirname(currentdir), 'weights', 'MasterFXcloner_ps.pt') | |
default_norm_feature_path = os.path.join(os.path.dirname(currentdir), 'weights', 'musdb18_fxfeatures_eqcompimagegain.npy') | |
import argparse | |
import yaml | |
parser = argparse.ArgumentParser() | |
directory_args = parser.add_argument_group('Directory args') | |
# directory paths | |
directory_args.add_argument('--target_dir', type=str, default='./yt_dir/') | |
directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir') | |
directory_args.add_argument('--input_file_name', type=str, default='input') | |
directory_args.add_argument('--reference_file_name', type=str, default='reference') | |
directory_args.add_argument('--reference_file_name_2interpolate', type=str, default='reference_B') | |
# saved weights | |
directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path_enc) | |
directory_args.add_argument('--ckpt_path_conv', type=str, default=default_ckpt_path_master) | |
directory_args.add_argument('--precomputed_normalization_feature', type=str, default=default_norm_feature_path) | |
inference_args = parser.add_argument_group('Inference args') | |
inference_args.add_argument('--sample_rate', type=int, default=44100) | |
inference_args.add_argument('--segment_length', type=int, default=2**19) # segmentize input according to this duration | |
inference_args.add_argument('--segment_length_ref', type=int, default=2**19) # segmentize reference according to this duration | |
# stem-level instruments & separation | |
inference_args.add_argument('--instruments', type=str2bool, default=["drums", "bass", "other", "vocals"], help='instrumental tracks to perform style transfer') | |
inference_args.add_argument('--stem_level_directory_name', type=str, default='separated') | |
inference_args.add_argument('--save_each_inst', type=str2bool, default=False) | |
inference_args.add_argument('--do_not_separate', type=str2bool, default=False) | |
inference_args.add_argument('--separation_model', type=str, default='htdemucs') | |
# FX normalization | |
inference_args.add_argument('--normalize_input', type=str2bool, default=False) | |
inference_args.add_argument('--normalization_order', type=str2bool, default=['loudness', 'eq', 'compression', 'imager', 'loudness']) # Effects to be normalized, order matters | |
# interpolation | |
inference_args.add_argument('--interpolation', type=str2bool, default=False) | |
inference_args.add_argument('--interpolate_segments', type=int, default=30) | |
device_args = parser.add_argument_group('Device args') | |
device_args.add_argument('--workers', type=int, default=1) | |
device_args.add_argument('--batch_size', type=int, default=1) # for processing long audio | |
args = parser.parse_args() | |
# load network configurations | |
with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f: | |
configs = yaml.full_load(f) | |
args.cfg_encoder = configs['Effects_Encoder']['default'] | |
args.cfg_converter = configs['TCN']['default'] | |
return args | |