Spaces:
Runtime error
Runtime error
File size: 22,637 Bytes
2777fde 66e10e8 2777fde 66e10e8 2777fde 66e10e8 2777fde 66e10e8 2777fde 66e10e8 2777fde 66e10e8 2777fde 66e10e8 2777fde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
"""
Inference code of music style transfer
of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"
Process : converts the mixing style of the input music recording to that of the refernce music.
files inside the target directory should be organized as follow
"path_to_data_directory"/"song_name_#1"/input.wav
"path_to_data_directory"/"song_name_#1"/reference.wav
...
"path_to_data_directory"/"song_name_#n"/input.wav
"path_to_data_directory"/"song_name_#n"/reference.wav
where the 'input' and 'reference' should share the same names.
"""
import numpy as np
from glob import glob
import os
import torch
import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer"))
from networks import FXencoder, TCNModel
from data_loader import *
class Mixing_Style_Transfer_Inference:
def __init__(self, args, trained_w_ddp=True):
if torch.cuda.is_available():
self.device = torch.device("cuda:0")
else:
self.device = torch.device("cpu")
# inference computational hyperparameters
self.args = args
self.segment_length = args.segment_length
self.batch_size = args.batch_size
self.sample_rate = 44100 # sampling rate should be 44100
self.time_in_seconds = int(args.segment_length // self.sample_rate)
# directory configuration
self.output_dir = args.target_dir if args.output_dir==None else args.output_dir
self.target_dir = args.target_dir
# load model and its checkpoint weights
self.models = {}
self.models['effects_encoder'] = FXencoder(args.cfg_encoder).to(self.device)
self.models['mixing_converter'] = TCNModel(nparams=args.cfg_converter["condition_dimension"], \
ninputs=2, \
noutputs=2, \
nblocks=args.cfg_converter["nblocks"], \
dilation_growth=args.cfg_converter["dilation_growth"], \
kernel_size=args.cfg_converter["kernel_size"], \
channel_width=args.cfg_converter["channel_width"], \
stack_size=args.cfg_converter["stack_size"], \
cond_dim=args.cfg_converter["condition_dimension"], \
causal=args.cfg_converter["causal"]).to(self.device)
ckpt_paths = {'effects_encoder' : args.ckpt_path_enc, \
'mixing_converter' : args.ckpt_path_conv}
# reload saved model weights
ddp = trained_w_ddp
self.reload_weights(ckpt_paths, ddp=ddp)
# load data loader for the inference procedure
inference_dataset = Song_Dataset_Inference(args)
self.data_loader = DataLoader(inference_dataset, \
batch_size=1, \
shuffle=False, \
num_workers=args.workers, \
drop_last=False)
# save current arguments
self.save_args(args)
''' check stem-wise result '''
if not self.args.do_not_separate:
os.environ['MKL_THREADING_LAYER'] = 'GNU'
separate_file_names = [args.input_file_name, args.reference_file_name]
if self.args.interpolation:
separate_file_names.append(args.reference_file_name_2interpolate)
for cur_idx, cur_inf_dir in enumerate(sorted(glob(f"{args.target_dir}*/"))):
for cur_file_name in separate_file_names:
cur_sep_file_path = os.path.join(cur_inf_dir, cur_file_name+'.wav')
cur_sep_output_dir = os.path.join(cur_inf_dir, args.stem_level_directory_name)
if os.path.exists(os.path.join(cur_sep_output_dir, self.args.separation_model, cur_file_name, 'drums.wav')):
print(f'\talready separated current file : {cur_sep_file_path}')
else:
cur_cmd_line = f"demucs {cur_sep_file_path} -n {self.args.separation_model} -d {self.device} -o {cur_sep_output_dir}"
os.system(cur_cmd_line)
# reload model weights from the target checkpoint path
def reload_weights(self, ckpt_paths, ddp=True):
for cur_model_name in self.models.keys():
checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device)
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint["model"].items():
# remove `module.` if the model was trained with DDP
name = k[7:] if ddp else k
new_state_dict[name] = v
# load params
self.models[cur_model_name].load_state_dict(new_state_dict)
print(f"---reloaded checkpoint weights : {cur_model_name} ---")
# Inference whole song
def inference(self, input_track_path, reference_track_path):
print("\n======= Start to inference music mixing style transfer =======")
# normalized input
output_name_tag = 'output' if self.args.normalize_input else 'output_notnormed'
for step, (input_stems, reference_stems, dir_name) in enumerate(self.data_loader):
print(f"---inference file name : {dir_name[0]}---")
cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
os.makedirs(cur_out_dir, exist_ok=True)
''' stem-level inference '''
inst_outputs = []
for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
print(f'\t{cur_inst_name}...')
''' segmentize whole songs into batch '''
if len(input_stems[0][cur_inst_idx][0]) > self.args.segment_length:
cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
dir_name[0], \
segment_length=self.args.segment_length, \
discard_last=False)
else:
cur_inst_input_stem = [input_stems[:, cur_inst_idx]]
if len(reference_stems[0][cur_inst_idx][0]) > self.args.segment_length*2:
cur_inst_reference_stem = self.batchwise_segmentization(reference_stems[0][cur_inst_idx], \
dir_name[0], \
segment_length=self.args.segment_length_ref, \
discard_last=False)
else:
cur_inst_reference_stem = [reference_stems[:, cur_inst_idx]]
''' inference '''
# first extract reference style embedding
infered_ref_data_list = []
for cur_ref_data in cur_inst_reference_stem:
cur_ref_data = cur_ref_data.to(self.device)
# Effects Encoder inference
with torch.no_grad():
self.models["effects_encoder"].eval()
reference_feature = self.models["effects_encoder"](cur_ref_data)
infered_ref_data_list.append(reference_feature)
# compute average value from the extracted exbeddings
infered_ref_data = torch.stack(infered_ref_data_list)
infered_ref_data_avg = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
# mixing style converter
infered_data_list = []
for cur_data in cur_inst_input_stem:
cur_data = cur_data.to(self.device)
with torch.no_grad():
self.models["mixing_converter"].eval()
infered_data = self.models["mixing_converter"](cur_data, infered_ref_data_avg.unsqueeze(0))
infered_data_list.append(infered_data.cpu().detach())
# combine back to whole song
for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
# final output of current instrument
fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
inst_outputs.append(fin_data_out_inst)
# save output of each instrument
if self.args.save_each_inst:
sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
# remix
fin_data_out_mix = sum(inst_outputs)
sf.write(os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav"), fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
# Inference whole song
def inference_interpolation(self, ):
print("\n======= Start to inference interpolation examples =======")
# normalized input
output_name_tag = 'output_interpolation' if self.args.normalize_input else 'output_notnormed_interpolation'
for step, (input_stems, reference_stems_A, reference_stems_B, dir_name) in enumerate(self.data_loader):
print(f"---inference file name : {dir_name[0]}---")
cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
os.makedirs(cur_out_dir, exist_ok=True)
''' stem-level inference '''
inst_outputs = []
for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
print(f'\t{cur_inst_name}...')
''' segmentize whole song '''
# segmentize input according to number of interpolating segments
interpolate_segment_length = input_stems[0][cur_inst_idx].shape[1] // self.args.interpolate_segments + 1
cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
dir_name[0], \
segment_length=interpolate_segment_length, \
discard_last=False)
# batchwise segmentize 2 reference tracks
if len(reference_stems_A[0][cur_inst_idx][0]) > self.args.segment_length_ref:
cur_inst_reference_stem_A = self.batchwise_segmentization(reference_stems_A[0][cur_inst_idx], \
dir_name[0], \
segment_length=self.args.segment_length_ref, \
discard_last=False)
else:
cur_inst_reference_stem_A = [reference_stems_A[:, cur_inst_idx]]
if len(reference_stems_B[0][cur_inst_idx][0]) > self.args.segment_length_ref:
cur_inst_reference_stem_B = self.batchwise_segmentization(reference_stems_B[0][cur_inst_idx], \
dir_name[0], \
segment_length=self.args.segment_length, \
discard_last=False)
else:
cur_inst_reference_stem_B = [reference_stems_B[:, cur_inst_idx]]
''' inference '''
# first extract reference style embeddings
# reference A
infered_ref_data_list = []
for cur_ref_data in cur_inst_reference_stem_A:
cur_ref_data = cur_ref_data.to(self.device)
# Effects Encoder inference
with torch.no_grad():
self.models["effects_encoder"].eval()
reference_feature = self.models["effects_encoder"](cur_ref_data)
infered_ref_data_list.append(reference_feature)
# compute average value from the extracted exbeddings
infered_ref_data = torch.stack(infered_ref_data_list)
infered_ref_data_avg_A = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
# reference B
infered_ref_data_list = []
for cur_ref_data in cur_inst_reference_stem_B:
cur_ref_data = cur_ref_data.to(self.device)
# Effects Encoder inference
with torch.no_grad():
self.models["effects_encoder"].eval()
reference_feature = self.models["effects_encoder"](cur_ref_data)
infered_ref_data_list.append(reference_feature)
# compute average value from the extracted exbeddings
infered_ref_data = torch.stack(infered_ref_data_list)
infered_ref_data_avg_B = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
# mixing style converter
infered_data_list = []
for cur_idx, cur_data in enumerate(cur_inst_input_stem):
cur_data = cur_data.to(self.device)
# perform linear interpolation on embedding space
cur_weight = (self.args.interpolate_segments-1-cur_idx) / (self.args.interpolate_segments-1)
cur_ref_emb = cur_weight * infered_ref_data_avg_A + (1-cur_weight) * infered_ref_data_avg_B
with torch.no_grad():
self.models["mixing_converter"].eval()
infered_data = self.models["mixing_converter"](cur_data, cur_ref_emb.unsqueeze(0))
infered_data_list.append(infered_data.cpu().detach())
# combine back to whole song
for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
# final output of current instrument
fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
inst_outputs.append(fin_data_out_inst)
# save output of each instrument
if self.args.save_each_inst:
sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
# remix
fin_data_out_mix = sum(inst_outputs)
fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav"
sf.write(fin_output_path), fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
return fin_output_path
# function that segmentize an entire song into batch
def batchwise_segmentization(self, target_song, song_name, segment_length, discard_last=False):
assert target_song.shape[-1] >= self.args.segment_length, \
f"Error : Insufficient duration!\n\t \
Target song's length is shorter than segment length.\n\t \
Song name : {song_name}\n\t \
Consider changing the 'segment_length' or song with sufficient duration"
# discard restovers (last segment)
if discard_last:
target_length = target_song.shape[-1] - target_song.shape[-1] % segment_length
target_song = target_song[:, :target_length]
# pad last segment
else:
pad_length = segment_length - target_song.shape[-1] % segment_length
target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1)
# segmentize according to the given segment_length
whole_batch_data = []
batch_wise_data = []
for cur_segment_idx in range(target_song.shape[-1]//segment_length):
batch_wise_data.append(target_song[..., cur_segment_idx*segment_length:(cur_segment_idx+1)*segment_length])
if len(batch_wise_data)==self.args.batch_size:
whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
batch_wise_data = []
if batch_wise_data:
whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
return whole_batch_data
# save current inference arguments
def save_args(self, params):
info = '\n[args]\n'
for sub_args in parser._action_groups:
if sub_args.title in ['positional arguments', 'optional arguments', 'options']:
continue
size_sub = len(sub_args._group_actions)
info += f' {sub_args.title} ({size_sub})\n'
for i, arg in enumerate(sub_args._group_actions):
prefix = '-'
info += f' {prefix} {arg.dest:20s}: {getattr(params, arg.dest)}\n'
info += '\n'
os.makedirs(self.output_dir, exist_ok=True)
record_path = f"{self.output_dir}style_transfer_inference_configurations.txt"
f = open(record_path, 'w')
np.savetxt(f, [info], delimiter=" ", fmt="%s")
f.close()
def set_up()
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
os.environ['MASTER_PORT'] = '8888'
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
''' Configurations for music mixing style transfer '''
currentdir = os.path.dirname(os.path.realpath(__file__))
default_ckpt_path_enc = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt')
default_ckpt_path_conv = os.path.join(os.path.dirname(currentdir), 'weights', 'MixFXcloner_ps.pt')
default_norm_feature_path = os.path.join(os.path.dirname(currentdir), 'weights', 'musdb18_fxfeatures_eqcompimagegain.npy')
import argparse
import yaml
parser = argparse.ArgumentParser()
directory_args = parser.add_argument_group('Directory args')
# directory paths
directory_args.add_argument('--target_dir', type=str, default='./samples/style_transfer/')
directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir')
directory_args.add_argument('--input_file_name', type=str, default='input')
directory_args.add_argument('--reference_file_name', type=str, default='reference')
directory_args.add_argument('--reference_file_name_2interpolate', type=str, default='reference_B')
# saved weights
directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path_enc)
directory_args.add_argument('--ckpt_path_conv', type=str, default=default_ckpt_path_conv)
directory_args.add_argument('--precomputed_normalization_feature', type=str, default=default_norm_feature_path)
inference_args = parser.add_argument_group('Inference args')
inference_args.add_argument('--sample_rate', type=int, default=44100)
inference_args.add_argument('--segment_length', type=int, default=2**19) # segmentize input according to this duration
inference_args.add_argument('--segment_length_ref', type=int, default=2**19) # segmentize reference according to this duration
# stem-level instruments & separation
inference_args.add_argument('--instruments', type=str2bool, default=["drums", "bass", "other", "vocals"], help='instrumental tracks to perform style transfer')
inference_args.add_argument('--stem_level_directory_name', type=str, default='separated')
inference_args.add_argument('--save_each_inst', type=str2bool, default=False)
inference_args.add_argument('--do_not_separate', type=str2bool, default=False)
inference_args.add_argument('--separation_model', type=str, default='htdemucs')
# FX normalization
inference_args.add_argument('--normalize_input', type=str2bool, default=True)
inference_args.add_argument('--normalization_order', type=str2bool, default=['loudness', 'eq', 'compression', 'imager', 'loudness']) # Effects to be normalized, order matters
# interpolation
inference_args.add_argument('--interpolation', type=str2bool, default=False)
inference_args.add_argument('--interpolate_segments', type=int, default=30)
device_args = parser.add_argument_group('Device args')
device_args.add_argument('--workers', type=int, default=1)
device_args.add_argument('--batch_size', type=int, default=1) # for processing long audio
args = parser.parse_args()
# load network configurations
with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f:
configs = yaml.full_load(f)
args.cfg_encoder = configs['Effects_Encoder']['default']
args.cfg_converter = configs['TCN']['default']
return args
|