File size: 20,427 Bytes
077a11b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45ea23f
077a11b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45ea23f
077a11b
f9a28ee
07846b5
 
077a11b
45ea23f
 
0a0d52d
08a42aa
 
45ea23f
0a0d52d
45ea23f
0a0d52d
45ea23f
 
f9a28ee
 
 
12de70d
077a11b
07846b5
 
 
12de70d
07846b5
 
 
 
 
 
12de70d
07846b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45ea23f
07846b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45ea23f
08a42aa
45ea23f
 
 
077a11b
9e9592e
 
077a11b
07846b5
077a11b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
"""
    Inference code of music style transfer
    of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"
    Process : converts the mastering style of the input music recording to that of the refernce music.
                files inside the target directory should be organized as follow 
                    "path_to_data_directory"/"song_name_#1"/input.wav
                    "path_to_data_directory"/"song_name_#1"/reference.wav
                    ...
                    "path_to_data_directory"/"song_name_#n"/input.wav
                    "path_to_data_directory"/"song_name_#n"/reference.wav
                where the 'input' and 'reference' should share the same names.
"""
import numpy as np
from glob import glob
import os
import torch

import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer"))
from networks import FXencoder, TCNModel
from data_loader import *
import librosa
import pyloudnorm



class Mastering_Style_Transfer_Inference:
    def __init__(self, args, trained_w_ddp=True):
        if torch.cuda.is_available():
            self.device = torch.device("cuda:0")
        else:
            self.device = torch.device("cpu")
        
        # inference computational hyperparameters
        self.args = args
        self.segment_length = args.segment_length
        self.batch_size = args.batch_size
        self.sample_rate = 44100    # sampling rate should be 44100
        self.time_in_seconds = int(args.segment_length // self.sample_rate)

        # directory configuration
        self.output_dir = args.target_dir if args.output_dir==None else args.output_dir
        self.target_dir = args.target_dir

        # load model and its checkpoint weights
        self.models = {}
        self.models['effects_encoder'] = FXencoder(args.cfg_encoder).to(self.device)
        self.models['mastering_converter'] = TCNModel(nparams=args.cfg_converter["condition_dimension"], \
                                                    ninputs=2, \
                                                    noutputs=2, \
                                                    nblocks=args.cfg_converter["nblocks"], \
                                                    dilation_growth=args.cfg_converter["dilation_growth"], \
                                                    kernel_size=args.cfg_converter["kernel_size"], \
                                                    channel_width=args.cfg_converter["channel_width"], \
                                                    stack_size=args.cfg_converter["stack_size"], \
                                                    cond_dim=args.cfg_converter["condition_dimension"], \
                                                    causal=args.cfg_converter["causal"]).to(self.device)
        
        ckpt_paths = {'effects_encoder' : args.ckpt_path_enc, \
                        'mastering_converter' : args.ckpt_path_conv}
        # reload saved model weights
        ddp = trained_w_ddp
        self.reload_weights(ckpt_paths, ddp=ddp)


    # reload model weights from the target checkpoint path
    def reload_weights(self, ckpt_paths, ddp=True):
        for cur_model_name in self.models.keys():
            checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device)

            from collections import OrderedDict
            new_state_dict = OrderedDict()
            for k, v in checkpoint["model"].items():
                # remove `module.` if the model was trained with DDP
                name = k[7:] if ddp else k
                new_state_dict[name] = v
        
            # load params
            self.models[cur_model_name].load_state_dict(new_state_dict)

            print(f"---reloaded checkpoint weights : {cur_model_name} ---")


    # Inference whole song
    def inference(self, input_track_path, reference_track_path):
        print("\n======= Start to inference music mastering style transfer =======")

        # load input wavs
        input_aud = load_wav_segment(input_track_path, axis=0)
        reference_aud = load_wav_segment(reference_track_path, axis=0)

        # loudness normalization for stability
        meter = pyloudnorm.Meter(44100)
        norm_loudness_gain = -16.
        loudness_in = meter.integrated_loudness(input_aud.transpose(-1, -2))
        loudness_ref = meter.integrated_loudness(reference_aud.transpose(-1, -2))

        input_aud = pyloudnorm.normalize.loudness(input_aud, loudness_in, norm_loudness_gain)
        input_aud = np.clip(input_aud, -1., 1.)
        reference_aud = pyloudnorm.normalize.loudness(reference_aud, loudness_ref, norm_loudness_gain)
        reference_aud = np.clip(reference_aud, -1., 1.)
        
        input_aud = torch.FloatTensor(input_aud).to(self.device)
        reference_aud = torch.FloatTensor(reference_aud).to(self.device)
        
        cur_out_dir = './yt_dir/0/'
        os.makedirs(cur_out_dir, exist_ok=True)
        ''' segmentize whole songs into batch '''
        if input_aud.shape[1] > self.args.segment_length:
            cur_inst_input_stem = self.batchwise_segmentization(input_aud, \
                                                                    "input", \
                                                                    segment_length=self.args.segment_length, \
                                                                    discard_last=False)
        else:
            cur_inst_input_stem = [input_aud.unsqueeze(0)]
        if reference_aud.shape[1] > self.args.segment_length*2:
            cur_inst_reference_stem = self.batchwise_segmentization(reference_aud, \
                                                                        "reference", \
                                                                        segment_length=self.args.segment_length_ref, \
                                                                        discard_last=False)
        else:
            cur_inst_reference_stem = [reference_aud.unsqueeze(0)]

        ''' inference '''
        # first extract reference style embedding
        infered_ref_data_list = []
        for cur_ref_data in cur_inst_reference_stem:
            cur_ref_data = cur_ref_data.to(self.device)
            # Effects Encoder inference
            with torch.no_grad():
                self.models["effects_encoder"].eval()
                reference_feature = self.models["effects_encoder"](cur_ref_data)
            infered_ref_data_list.append(reference_feature)
        # compute average value from the extracted embeddings
        infered_ref_data = torch.stack(infered_ref_data_list)
        infered_ref_data_avg = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)

        # mastering style converter
        infered_data_list = []
        for cur_data in cur_inst_input_stem:
            cur_data = cur_data.to(self.device)
            with torch.no_grad():
                self.models["mastering_converter"].eval()
                infered_data = self.models["mastering_converter"](cur_data, infered_ref_data_avg.unsqueeze(0))
            infered_data_list.append(infered_data.cpu().detach())

        # combine back to whole song
        for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
            cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
            fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
        # final output of current instrument
        fin_data_out_mastered = fin_data_out[:, :input_aud.shape[-1]].numpy()

        # adjust to reference's loudness
        loudness_out = meter.integrated_loudness(fin_data_out_mastered.transpose(-1, -2))
        fin_data_out_mastered = pyloudnorm.normalize.loudness(fin_data_out_mastered, loudness_out, loudness_ref)
        fin_data_out_mastered = np.clip(fin_data_out_mastered, -1., 1.)
        
        # remix
        fin_output_path_mastering = os.path.join(cur_out_dir, f"remastered_output.wav")
        sf.write(fin_output_path_mastering, fin_data_out_mastered.transpose(-1, -2), self.args.sample_rate, 'PCM_16')

        return fin_output_path_mastering


    # Inference whole song
    def inference_interpolation(self, ):
        print("\n======= Start to inference interpolation examples =======")
        # normalized input
        output_name_tag = 'output_interpolation' if self.args.normalize_input else 'output_notnormed_interpolation'

        for step, (input_stems, reference_stems_A, reference_stems_B, dir_name) in enumerate(self.data_loader):
            print(f"---inference file name : {dir_name[0]}---")
            cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
            os.makedirs(cur_out_dir, exist_ok=True)
            ''' stem-level inference '''
            inst_outputs = []
            for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
                print(f'\t{cur_inst_name}...')
                ''' segmentize whole song '''
                # segmentize input according to number of interpolating segments
                interpolate_segment_length = input_stems[0][cur_inst_idx].shape[1] // self.args.interpolate_segments + 1
                cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
                                                                                dir_name[0], \
                                                                                segment_length=interpolate_segment_length, \
                                                                                discard_last=False)
                # batchwise segmentize 2 reference tracks
                if len(reference_stems_A[0][cur_inst_idx][0]) > self.args.segment_length_ref:
                    cur_inst_reference_stem_A = self.batchwise_segmentization(reference_stems_A[0][cur_inst_idx], \
                                                                                        dir_name[0], \
                                                                                        segment_length=self.args.segment_length_ref, \
                                                                                        discard_last=False)
                else:
                    cur_inst_reference_stem_A = [reference_stems_A[:, cur_inst_idx]]
                if len(reference_stems_B[0][cur_inst_idx][0]) > self.args.segment_length_ref:
                    cur_inst_reference_stem_B = self.batchwise_segmentization(reference_stems_B[0][cur_inst_idx], \
                                                                                        dir_name[0], \
                                                                                        segment_length=self.args.segment_length, \
                                                                                        discard_last=False)
                else:
                    cur_inst_reference_stem_B = [reference_stems_B[:, cur_inst_idx]]

                ''' inference '''
                # first extract reference style embeddings
                # reference A
                infered_ref_data_list = []
                for cur_ref_data in cur_inst_reference_stem_A:
                    cur_ref_data = cur_ref_data.to(self.device)
                    # Effects Encoder inference
                    with torch.no_grad():
                        self.models["effects_encoder"].eval()
                        reference_feature = self.models["effects_encoder"](cur_ref_data)
                    infered_ref_data_list.append(reference_feature)
                # compute average value from the extracted exbeddings
                infered_ref_data = torch.stack(infered_ref_data_list)
                infered_ref_data_avg_A = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)

                # reference B
                infered_ref_data_list = []
                for cur_ref_data in cur_inst_reference_stem_B:
                    cur_ref_data = cur_ref_data.to(self.device)
                    # Effects Encoder inference
                    with torch.no_grad():
                        self.models["effects_encoder"].eval()
                        reference_feature = self.models["effects_encoder"](cur_ref_data)
                    infered_ref_data_list.append(reference_feature)
                # compute average value from the extracted exbeddings
                infered_ref_data = torch.stack(infered_ref_data_list)
                infered_ref_data_avg_B = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)

                # mixing style converter
                infered_data_list = []
                for cur_idx, cur_data in enumerate(cur_inst_input_stem):
                    cur_data = cur_data.to(self.device)
                    # perform linear interpolation on embedding space
                    cur_weight = (self.args.interpolate_segments-1-cur_idx) / (self.args.interpolate_segments-1)
                    cur_ref_emb = cur_weight * infered_ref_data_avg_A +  (1-cur_weight) * infered_ref_data_avg_B
                    with torch.no_grad():
                        self.models["mastering_converter"].eval()
                        infered_data = self.models["mastering_converter"](cur_data, cur_ref_emb.unsqueeze(0))
                    infered_data_list.append(infered_data.cpu().detach())

                # combine back to whole song
                for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
                    cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
                    fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
                # final output of current instrument
                fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
                inst_outputs.append(fin_data_out_inst)

                # save output of each instrument
                if self.args.save_each_inst:
                    sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
            # remix
            fin_data_out_mix = sum(inst_outputs)
            fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav")
            sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')

            return fin_output_path


    # function that segmentize an entire song into batch
    def batchwise_segmentization(self, target_song, song_name, segment_length, discard_last=False):
        assert target_song.shape[-1] >= self.args.segment_length, \
                f"Error : Insufficient duration!\n\t \
                Target song's length is shorter than segment length.\n\t \
                Song name : {song_name}\n\t \
                Consider changing the 'segment_length' or song with sufficient duration"

        # discard restovers (last segment)
        if discard_last:
            target_length = target_song.shape[-1] - target_song.shape[-1] % segment_length
            target_song = target_song[:, :target_length]
        # pad last segment
        else:
            pad_length = segment_length - target_song.shape[-1] % segment_length
            target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1)

        # segmentize according to the given segment_length
        whole_batch_data = []
        batch_wise_data = []
        for cur_segment_idx in range(target_song.shape[-1]//segment_length):
            batch_wise_data.append(target_song[..., cur_segment_idx*segment_length:(cur_segment_idx+1)*segment_length])
            if len(batch_wise_data)==self.args.batch_size:
                whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
                batch_wise_data = []
        if batch_wise_data:
            whole_batch_data.append(torch.stack(batch_wise_data, dim=0))

        return whole_batch_data



def set_up_mastering(start_point_in_second=0, duration_in_second=30):
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ["CUDA_VISIBLE_DEVICES"] = '0'
    os.environ['MASTER_PORT'] = '8888'

    def str2bool(v):
        if v.lower() in ('yes', 'true', 't', 'y', '1'):
            return True
        elif v.lower() in ('no', 'false', 'f', 'n', '0'):
            return False
        else:
            raise argparse.ArgumentTypeError('Boolean value expected.')

    ''' Configurations for music mixing style transfer '''
    currentdir = os.path.dirname(os.path.realpath(__file__))
    default_ckpt_path_enc = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt')
    default_ckpt_path_conv = os.path.join(os.path.dirname(currentdir), 'weights', 'MixFXcloner_ps.pt')
    default_ckpt_path_master = os.path.join(os.path.dirname(currentdir), 'weights', 'MasterFXcloner_ps.pt')
    default_norm_feature_path = os.path.join(os.path.dirname(currentdir), 'weights', 'musdb18_fxfeatures_eqcompimagegain.npy')

    import argparse
    import yaml
    parser = argparse.ArgumentParser()

    directory_args = parser.add_argument_group('Directory args')
    # directory paths
    directory_args.add_argument('--target_dir', type=str, default='./yt_dir/')
    directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir')
    directory_args.add_argument('--input_file_name', type=str, default='input')
    directory_args.add_argument('--reference_file_name', type=str, default='reference')
    directory_args.add_argument('--reference_file_name_2interpolate', type=str, default='reference_B')
    # saved weights
    directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path_enc)
    directory_args.add_argument('--ckpt_path_conv', type=str, default=default_ckpt_path_master)
    directory_args.add_argument('--precomputed_normalization_feature', type=str, default=default_norm_feature_path)

    inference_args = parser.add_argument_group('Inference args')
    inference_args.add_argument('--sample_rate', type=int, default=44100)
    inference_args.add_argument('--segment_length', type=int, default=2**19)        # segmentize input according to this duration
    inference_args.add_argument('--segment_length_ref', type=int, default=2**19)    # segmentize reference according to this duration
    # stem-level instruments & separation
    inference_args.add_argument('--instruments', type=str2bool, default=["drums", "bass", "other", "vocals"], help='instrumental tracks to perform style transfer')
    inference_args.add_argument('--stem_level_directory_name', type=str, default='separated')
    inference_args.add_argument('--save_each_inst', type=str2bool, default=False)
    inference_args.add_argument('--do_not_separate', type=str2bool, default=False)
    inference_args.add_argument('--separation_model', type=str, default='htdemucs')
    # FX normalization
    inference_args.add_argument('--normalize_input', type=str2bool, default=False)
    inference_args.add_argument('--normalization_order', type=str2bool, default=['loudness', 'eq', 'compression', 'imager', 'loudness']) # Effects to be normalized, order matters
    # interpolation
    inference_args.add_argument('--interpolation', type=str2bool, default=False)
    inference_args.add_argument('--interpolate_segments', type=int, default=30)

    device_args = parser.add_argument_group('Device args')
    device_args.add_argument('--workers', type=int, default=1)
    device_args.add_argument('--batch_size', type=int, default=1)   # for processing long audio

    args = parser.parse_args()

    # load network configurations
    with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f:
        configs = yaml.full_load(f)
    args.cfg_encoder = configs['Effects_Encoder']['default']
    args.cfg_converter = configs['TCN']['default']

    return args