Spaces:
Build error
Build error
File size: 9,519 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
from dataclasses import dataclass, field
from typing import List, Optional
from coqpit import Coqpit
from TTS.vc.configs.shared_configs import BaseVCConfig
@dataclass
class FreeVCAudioConfig(Coqpit):
"""Audio configuration
Args:
max_wav_value (float):
The maximum value of the waveform.
input_sample_rate (int):
The sampling rate of the input waveform.
output_sample_rate (int):
The sampling rate of the output waveform.
filter_length (int):
The length of the filter.
hop_length (int):
The hop length.
win_length (int):
The window length.
n_mel_channels (int):
The number of mel channels.
mel_fmin (float):
The minimum frequency of the mel filterbank.
mel_fmax (Optional[float]):
The maximum frequency of the mel filterbank.
"""
max_wav_value: float = field(default=32768.0)
input_sample_rate: int = field(default=16000)
output_sample_rate: int = field(default=24000)
filter_length: int = field(default=1280)
hop_length: int = field(default=320)
win_length: int = field(default=1280)
n_mel_channels: int = field(default=80)
mel_fmin: float = field(default=0.0)
mel_fmax: Optional[float] = field(default=None)
@dataclass
class FreeVCArgs(Coqpit):
"""FreeVC model arguments
Args:
spec_channels (int):
The number of channels in the spectrogram.
inter_channels (int):
The number of channels in the intermediate layers.
hidden_channels (int):
The number of channels in the hidden layers.
filter_channels (int):
The number of channels in the filter layers.
n_heads (int):
The number of attention heads.
n_layers (int):
The number of layers.
kernel_size (int):
The size of the kernel.
p_dropout (float):
The dropout probability.
resblock (str):
The type of residual block.
resblock_kernel_sizes (List[int]):
The kernel sizes for the residual blocks.
resblock_dilation_sizes (List[List[int]]):
The dilation sizes for the residual blocks.
upsample_rates (List[int]):
The upsample rates.
upsample_initial_channel (int):
The number of channels in the initial upsample layer.
upsample_kernel_sizes (List[int]):
The kernel sizes for the upsample layers.
n_layers_q (int):
The number of layers in the quantization network.
use_spectral_norm (bool):
Whether to use spectral normalization.
gin_channels (int):
The number of channels in the global conditioning vector.
ssl_dim (int):
The dimension of the self-supervised learning embedding.
use_spk (bool):
Whether to use external speaker encoder.
"""
spec_channels: int = field(default=641)
inter_channels: int = field(default=192)
hidden_channels: int = field(default=192)
filter_channels: int = field(default=768)
n_heads: int = field(default=2)
n_layers: int = field(default=6)
kernel_size: int = field(default=3)
p_dropout: float = field(default=0.1)
resblock: str = field(default="1")
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11])
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2])
upsample_initial_channel: int = field(default=512)
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
n_layers_q: int = field(default=3)
use_spectral_norm: bool = field(default=False)
gin_channels: int = field(default=256)
ssl_dim: int = field(default=1024)
use_spk: bool = field(default=False)
num_spks: int = field(default=0)
segment_size: int = field(default=8960)
@dataclass
class FreeVCConfig(BaseVCConfig):
"""Defines parameters for FreeVC End2End TTS model.
Args:
model (str):
Model name. Do not change unless you know what you are doing.
model_args (FreeVCArgs):
Model architecture arguments. Defaults to `FreeVCArgs()`.
audio (FreeVCAudioConfig):
Audio processing configuration. Defaults to `FreeVCAudioConfig()`.
grad_clip (List):
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.
lr_gen (float):
Initial learning rate for the generator. Defaults to 0.0002.
lr_disc (float):
Initial learning rate for the discriminator. Defaults to 0.0002.
lr_scheduler_gen (str):
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.
lr_scheduler_gen_params (dict):
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
lr_scheduler_disc (str):
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.
lr_scheduler_disc_params (dict):
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
scheduler_after_epoch (bool):
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
optimizer (str):
Name of the optimizer to use with both the generator and the discriminator networks. One of the
`torch.optim.*`. Defaults to `AdamW`.
kl_loss_alpha (float):
Loss weight for KL loss. Defaults to 1.0.
disc_loss_alpha (float):
Loss weight for the discriminator loss. Defaults to 1.0.
gen_loss_alpha (float):
Loss weight for the generator loss. Defaults to 1.0.
feat_loss_alpha (float):
Loss weight for the feature matching loss. Defaults to 1.0.
mel_loss_alpha (float):
Loss weight for the mel loss. Defaults to 45.0.
return_wav (bool):
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
compute_linear_spec (bool):
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
use_weighted_sampler (bool):
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
weighted_sampler_attrs (dict):
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
by overweighting `root_path` by 2.0. Defaults to `{}`.
weighted_sampler_multipliers (dict):
Weight each unique value of a key returned by the formatter for weighted sampling.
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
r (int):
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
add_blank (bool):
If true, a blank token is added in between every character. Defaults to `True`.
test_sentences (List[List]):
List of sentences with speaker and language information to be used for testing.
language_ids_file (str):
Path to the language ids file.
use_language_embedding (bool):
If true, language embedding is used. Defaults to `False`.
Note:
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
Example:
>>> from TTS.vc.configs.freevc_config import FreeVCConfig
>>> config = FreeVCConfig()
"""
model: str = "freevc"
# model specific params
model_args: FreeVCArgs = field(default_factory=FreeVCArgs)
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig)
# optimizer
# TODO with training support
# loss params
# TODO with training support
# data loader params
return_wav: bool = True
compute_linear_spec: bool = True
# sampler params
use_weighted_sampler: bool = False # TODO: move it to the base config
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
# overrides
r: int = 1 # DO NOT CHANGE
add_blank: bool = True
# multi-speaker settings
# use speaker embedding layer
num_speakers: int = 0
speakers_file: str = None
speaker_embedding_channels: int = 256
# use d-vectors
use_d_vector_file: bool = False
d_vector_file: List[str] = None
d_vector_dim: int = None
def __post_init__(self):
for key, val in self.model_args.items():
if hasattr(self, key):
self[key] = val
|