Spaces:
Runtime error
Runtime error
# ************************************************************************* | |
# Copyright (2023) Bytedance Inc. | |
# | |
# Copyright (2023) DragDiffusion Authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ************************************************************************* | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
from tqdm import tqdm | |
from PIL import Image | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
from diffusers import StableDiffusionPipeline | |
# override unet forward | |
# The only difference from diffusers: | |
# return intermediate UNet features of all UpSample blocks | |
def override_forward(self): | |
def forward( | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
return_intermediates: bool = False, | |
): | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
for dim in sample.shape[-2:]: | |
if dim % default_overall_up_factor != 0: | |
# Forward upsample size to force interpolation output size. | |
forward_upsample_size = True | |
break | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
aug_emb = None | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# there might be better ways to encapsulate this. | |
class_labels = class_labels.to(dtype=sample.dtype) | |
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
if self.config.class_embeddings_concat: | |
emb = torch.cat([emb, class_emb], dim=-1) | |
else: | |
emb = emb + class_emb | |
if self.config.addition_embed_type == "text": | |
aug_emb = self.add_embedding(encoder_hidden_states) | |
elif self.config.addition_embed_type == "text_image": | |
# Kandinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
aug_emb = self.add_embedding(text_embs, image_embs) | |
elif self.config.addition_embed_type == "text_time": | |
# SDXL - style | |
if "text_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
) | |
text_embeds = added_cond_kwargs.get("text_embeds") | |
if "time_ids" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
) | |
time_ids = added_cond_kwargs.get("time_ids") | |
time_embeds = self.add_time_proj(time_ids.flatten()) | |
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
add_embeds = add_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(add_embeds) | |
elif self.config.addition_embed_type == "image": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
aug_emb = self.add_embedding(image_embs) | |
elif self.config.addition_embed_type == "image_hint": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
hint = added_cond_kwargs.get("hint") | |
aug_emb, hint = self.add_embedding(image_embs, hint) | |
sample = torch.cat([sample, hint], dim=1) | |
emb = emb + aug_emb if aug_emb is not None else emb | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
# Kadinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(image_embeds) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
# 2.5 GLIGEN position net | |
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: | |
cross_attention_kwargs = cross_attention_kwargs.copy() | |
gligen_args = cross_attention_kwargs.pop("gligen") | |
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} | |
# 3. down | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# if USE_PEFT_BACKEND: | |
# # weight the lora layers by setting `lora_scale` for each PEFT layer | |
# scale_lora_layers(self, lora_scale) | |
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | |
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets | |
is_adapter = down_intrablock_additional_residuals is not None | |
# maintain backward compatibility for legacy usage, where | |
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg | |
# but can only use one or the other | |
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: | |
deprecate( | |
"T2I should not use down_block_additional_residuals", | |
"1.3.0", | |
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ | |
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ | |
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", | |
standard_warn=False, | |
) | |
down_intrablock_additional_residuals = down_block_additional_residuals | |
is_adapter = True | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
# For t2i-adapter CrossAttnDownBlock2D | |
additional_residuals = {} | |
if is_adapter and len(down_intrablock_additional_residuals) > 0: | |
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
**additional_residuals, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale) | |
if is_adapter and len(down_intrablock_additional_residuals) > 0: | |
sample += down_intrablock_additional_residuals.pop(0) | |
down_block_res_samples += res_samples | |
if is_controlnet: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
sample = self.mid_block(sample, emb) | |
# To support T2I-Adapter-XL | |
if ( | |
is_adapter | |
and len(down_intrablock_additional_residuals) > 0 | |
and sample.shape == down_intrablock_additional_residuals[0].shape | |
): | |
sample += down_intrablock_additional_residuals.pop(0) | |
if is_controlnet: | |
sample = sample + mid_block_additional_residual | |
all_intermediate_features = [sample] | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
upsample_size=upsample_size, | |
scale=lora_scale, | |
) | |
all_intermediate_features.append(sample) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
# if USE_PEFT_BACKEND: | |
# # remove `lora_scale` from each PEFT layer | |
# unscale_lora_layers(self, lora_scale) | |
# only difference from diffusers, return intermediate results | |
if return_intermediates: | |
return sample, all_intermediate_features | |
else: | |
return sample | |
return forward | |
class DragPipeline(StableDiffusionPipeline): | |
# must call this function when initialize | |
def modify_unet_forward(self): | |
self.unet.forward = override_forward(self.unet) | |
def inv_step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
x: torch.FloatTensor, | |
eta=0., | |
verbose=False | |
): | |
""" | |
Inverse sampling for DDIM Inversion | |
""" | |
if verbose: | |
print("timestep: ", timestep) | |
next_step = timestep | |
timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999) | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod | |
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_step] | |
beta_prod_t = 1 - alpha_prod_t | |
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 | |
pred_dir = (1 - alpha_prod_t_next)**0.5 * model_output | |
x_next = alpha_prod_t_next**0.5 * pred_x0 + pred_dir | |
return x_next, pred_x0 | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
x: torch.FloatTensor, | |
): | |
""" | |
predict the sample of the next step in the denoise process. | |
""" | |
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | |
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep > 0 else self.scheduler.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 | |
pred_dir = (1 - alpha_prod_t_prev)**0.5 * model_output | |
x_prev = alpha_prod_t_prev**0.5 * pred_x0 + pred_dir | |
return x_prev, pred_x0 | |
def image2latent(self, image): | |
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
if type(image) is Image: | |
image = np.array(image) | |
image = torch.from_numpy(image).float() / 127.5 - 1 | |
image = image.permute(2, 0, 1).unsqueeze(0).to(DEVICE) | |
# input image density range [-1, 1] | |
latents = self.vae.encode(image)['latent_dist'].mean | |
latents = latents * 0.18215 | |
return latents | |
def latent2image(self, latents, return_type='np'): | |
latents = 1 / 0.18215 * latents.detach() | |
image = self.vae.decode(latents)['sample'] | |
if return_type == 'np': | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] | |
image = (image * 255).astype(np.uint8) | |
elif return_type == "pt": | |
image = (image / 2 + 0.5).clamp(0, 1) | |
return image | |
def latent2image_grad(self, latents): | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents)['sample'] | |
return image # range [-1, 1] | |
def get_text_embeddings(self, prompt): | |
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
# text embeddings | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=77, | |
return_tensors="pt" | |
) | |
text_embeddings = self.text_encoder(text_input.input_ids.to(DEVICE))[0] | |
return text_embeddings | |
# get all intermediate features and then do bilinear interpolation | |
# return features in the layer_idx list | |
def forward_unet_features( | |
self, | |
z, | |
t, | |
encoder_hidden_states, | |
layer_idx=[0], | |
interp_res_h=256, | |
interp_res_w=256): | |
unet_output, all_intermediate_features = self.unet( | |
z, | |
t, | |
encoder_hidden_states=encoder_hidden_states, | |
return_intermediates=True | |
) | |
all_return_features = [] | |
for idx in layer_idx: | |
feat = all_intermediate_features[idx] | |
feat = F.interpolate(feat, (interp_res_h, interp_res_w), mode='bilinear') | |
all_return_features.append(feat) | |
return_features = torch.cat(all_return_features, dim=1) | |
return unet_output, return_features | |
def __call__( | |
self, | |
prompt, | |
encoder_hidden_states=None, | |
batch_size=1, | |
height=512, | |
width=512, | |
num_inference_steps=50, | |
num_actual_inference_steps=None, | |
guidance_scale=7.5, | |
latents=None, | |
neg_prompt=None, | |
return_intermediates=False, | |
**kwds): | |
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
if encoder_hidden_states is None: | |
if isinstance(prompt, list): | |
batch_size = len(prompt) | |
elif isinstance(prompt, str): | |
if batch_size > 1: | |
prompt = [prompt] * batch_size | |
# text embeddings | |
encoder_hidden_states = self.get_text_embeddings(prompt) | |
# define initial latents if not predefined | |
if latents is None: | |
latents_shape = (batch_size, self.unet.in_channels, height//8, width//8) | |
latents = torch.randn(latents_shape, device=DEVICE, dtype=self.vae.dtype) | |
# unconditional embedding for classifier free guidance | |
if guidance_scale > 1.: | |
if neg_prompt: | |
uc_text = neg_prompt | |
else: | |
uc_text = "" | |
unconditional_embeddings = self.get_text_embeddings([uc_text]*batch_size) | |
encoder_hidden_states = torch.cat([unconditional_embeddings, encoder_hidden_states], dim=0) | |
print("latents shape: ", latents.shape) | |
# iterative sampling | |
self.scheduler.set_timesteps(num_inference_steps) | |
# print("Valid timesteps: ", reversed(self.scheduler.timesteps)) | |
if return_intermediates: | |
latents_list = [latents] | |
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="DDIM Sampler")): | |
if num_actual_inference_steps is not None and i < num_inference_steps - num_actual_inference_steps: | |
continue | |
if guidance_scale > 1.: | |
model_inputs = torch.cat([latents] * 2) | |
else: | |
model_inputs = latents | |
# predict the noise | |
noise_pred = self.unet( | |
model_inputs, | |
t, | |
encoder_hidden_states=encoder_hidden_states, | |
) | |
if guidance_scale > 1.0: | |
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0) | |
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon) | |
# compute the previous noise sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
if return_intermediates: | |
latents_list.append(latents) | |
image = self.latent2image(latents, return_type="pt") | |
if return_intermediates: | |
return image, latents_list | |
return image | |
def invert( | |
self, | |
image: torch.Tensor, | |
prompt, | |
encoder_hidden_states=None, | |
num_inference_steps=50, | |
num_actual_inference_steps=None, | |
guidance_scale=7.5, | |
eta=0.0, | |
return_intermediates=False, | |
**kwds): | |
""" | |
invert a real image into noise map with determinisc DDIM inversion | |
""" | |
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
batch_size = image.shape[0] | |
if encoder_hidden_states is None: | |
if isinstance(prompt, list): | |
if batch_size == 1: | |
image = image.expand(len(prompt), -1, -1, -1) | |
elif isinstance(prompt, str): | |
if batch_size > 1: | |
prompt = [prompt] * batch_size | |
encoder_hidden_states = self.get_text_embeddings(prompt) | |
# define initial latents | |
latents = self.image2latent(image) | |
# unconditional embedding for classifier free guidance | |
if guidance_scale > 1.: | |
max_length = text_input.input_ids.shape[-1] | |
unconditional_input = self.tokenizer( | |
[""] * batch_size, | |
padding="max_length", | |
max_length=77, | |
return_tensors="pt" | |
) | |
unconditional_embeddings = self.text_encoder(unconditional_input.input_ids.to(DEVICE))[0] | |
encoder_hidden_states = torch.cat([unconditional_embeddings, encoder_hidden_states], dim=0) | |
print("latents shape: ", latents.shape) | |
# interative sampling | |
self.scheduler.set_timesteps(num_inference_steps) | |
print("Valid timesteps: ", reversed(self.scheduler.timesteps)) | |
# print("attributes: ", self.scheduler.__dict__) | |
latents_list = [latents] | |
pred_x0_list = [latents] | |
for i, t in enumerate(tqdm(reversed(self.scheduler.timesteps), desc="DDIM Inversion")): | |
if num_actual_inference_steps is not None and i >= num_actual_inference_steps: | |
continue | |
if guidance_scale > 1.: | |
model_inputs = torch.cat([latents] * 2) | |
else: | |
model_inputs = latents | |
# predict the noise | |
noise_pred = self.unet(model_inputs, | |
t, | |
encoder_hidden_states=encoder_hidden_states, | |
) | |
if guidance_scale > 1.: | |
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0) | |
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon) | |
# compute the previous noise sample x_t-1 -> x_t | |
latents, pred_x0 = self.inv_step(noise_pred, t, latents) | |
latents_list.append(latents) | |
pred_x0_list.append(pred_x0) | |
if return_intermediates: | |
# return the intermediate laters during inversion | |
# pred_x0_list = [self.latent2image(img, return_type="pt") for img in pred_x0_list] | |
return latents, latents_list | |
return latents | |