Spaces:
Runtime error
Runtime error
Gustavo Belfort
commited on
update interface
Browse files- interface.py +88 -32
- interface_old.py +70 -0
- interface_projector.py +0 -126
interface.py
CHANGED
@@ -5,13 +5,18 @@ import gradio as gr
|
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
import pickle
|
|
|
8 |
import types
|
9 |
|
|
|
|
|
10 |
from huggingface_hub import hf_hub_url, cached_download
|
11 |
|
12 |
-
# with open(
|
|
|
|
|
13 |
with open(cached_download(hf_hub_url('ykilcher/apes', 'gamma500/network-snapshot-010000.pkl')), 'rb') as f:
|
14 |
-
G = pickle.load(f)[
|
15 |
|
16 |
device = torch.device("cpu")
|
17 |
if torch.cuda.is_available():
|
@@ -35,36 +40,87 @@ else:
|
|
35 |
G.synthesis.forward = types.MethodType(_new_synthesis_forward, G.synthesis)
|
36 |
|
37 |
|
38 |
-
def generate(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
with torch.no_grad():
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
y = (i // grid_len) * img.shape[0]
|
61 |
-
x = (i % grid_len) * img.shape[1]
|
62 |
-
grid[y:y+img.shape[0], x:x+img.shape[1], :] = img
|
63 |
-
return grid
|
64 |
|
65 |
|
66 |
-
iface = gr.Interface(
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
import pickle
|
8 |
+
import PIL.Image
|
9 |
import types
|
10 |
|
11 |
+
from projector import project, imageio, _MODELS
|
12 |
+
|
13 |
from huggingface_hub import hf_hub_url, cached_download
|
14 |
|
15 |
+
# with open("../models/gamma500/network-snapshot-010000.pkl", "rb") as f:
|
16 |
+
# with open("../models/gamma400/network-snapshot-010600.pkl", "rb") as f:
|
17 |
+
# with open("../models/gamma400/network-snapshot-019600.pkl", "rb") as f:
|
18 |
with open(cached_download(hf_hub_url('ykilcher/apes', 'gamma500/network-snapshot-010000.pkl')), 'rb') as f:
|
19 |
+
G = pickle.load(f)["G_ema"] # torch.nn.Module
|
20 |
|
21 |
device = torch.device("cpu")
|
22 |
if torch.cuda.is_available():
|
|
|
40 |
G.synthesis.forward = types.MethodType(_new_synthesis_forward, G.synthesis)
|
41 |
|
42 |
|
43 |
+
def generate(
|
44 |
+
target_image_upload,
|
45 |
+
# target_image_webcam,
|
46 |
+
num_steps,
|
47 |
+
seed,
|
48 |
+
learning_rate,
|
49 |
+
model_name,
|
50 |
+
normalize_for_clip,
|
51 |
+
loss_type,
|
52 |
+
regularize_noise_weight,
|
53 |
+
initial_noise_factor,
|
54 |
+
):
|
55 |
+
seed = round(seed)
|
56 |
+
np.random.seed(seed)
|
57 |
+
torch.manual_seed(seed)
|
58 |
+
target_image = target_image_upload
|
59 |
+
# if target_image is None:
|
60 |
+
# target_image = target_image_webcam
|
61 |
+
num_steps = round(num_steps)
|
62 |
+
print(type(target_image))
|
63 |
+
print(target_image.dtype)
|
64 |
+
print(target_image.max())
|
65 |
+
print(target_image.min())
|
66 |
+
print(target_image.shape)
|
67 |
+
target_pil = PIL.Image.fromarray(target_image).convert("RGB")
|
68 |
+
w, h = target_pil.size
|
69 |
+
s = min(w, h)
|
70 |
+
target_pil = target_pil.crop(
|
71 |
+
((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2)
|
72 |
+
)
|
73 |
+
target_pil = target_pil.resize(
|
74 |
+
(G.img_resolution, G.img_resolution), PIL.Image.LANCZOS
|
75 |
+
)
|
76 |
+
target_uint8 = np.array(target_pil, dtype=np.uint8)
|
77 |
+
target_image = torch.from_numpy(target_uint8.transpose([2, 0, 1])).to(device)
|
78 |
+
projected_w_steps = project(
|
79 |
+
G,
|
80 |
+
target=target_image,
|
81 |
+
num_steps=num_steps,
|
82 |
+
device=device,
|
83 |
+
verbose=True,
|
84 |
+
initial_learning_rate=learning_rate,
|
85 |
+
model_name=model_name,
|
86 |
+
normalize_for_clip=normalize_for_clip,
|
87 |
+
loss_type=loss_type,
|
88 |
+
regularize_noise_weight=regularize_noise_weight,
|
89 |
+
initial_noise_factor=initial_noise_factor,
|
90 |
+
)
|
91 |
with torch.no_grad():
|
92 |
+
video = imageio.get_writer(f'proj.mp4', mode='I', fps=10, codec='libx264', bitrate='16M')
|
93 |
+
for w in projected_w_steps:
|
94 |
+
synth_image = G.synthesis(w.to(device).unsqueeze(0), noise_mode="const")
|
95 |
+
synth_image = (synth_image + 1) * (255 / 2)
|
96 |
+
synth_image = (
|
97 |
+
synth_image.permute(0, 2, 3, 1)
|
98 |
+
.clamp(0, 255)
|
99 |
+
.to(torch.uint8)[0]
|
100 |
+
.cpu()
|
101 |
+
.numpy()
|
102 |
+
)
|
103 |
+
video.append_data(np.concatenate([target_uint8, synth_image], axis=1))
|
104 |
+
video.close()
|
105 |
+
return synth_image, "proj.mp4"
|
|
|
|
|
|
|
|
|
106 |
|
107 |
|
108 |
+
iface = gr.Interface(
|
109 |
+
fn=generate,
|
110 |
+
inputs=[
|
111 |
+
gr.inputs.Image(source="upload", optional=True),
|
112 |
+
# gr.inputs.Image(source="webcam", optional=True),
|
113 |
+
gr.inputs.Number(default=250, label="steps"),
|
114 |
+
gr.inputs.Number(default=69420, label="seed"),
|
115 |
+
gr.inputs.Number(default=0.05, label="learning_rate"),
|
116 |
+
gr.inputs.Dropdown(default='RN50', label="model_name", choices=['vgg16', *_MODELS.keys()]),
|
117 |
+
gr.inputs.Checkbox(default=True, label="normalize_for_clip"),
|
118 |
+
gr.inputs.Dropdown(
|
119 |
+
default="l2", label="loss_type", choices=["l2", "l1", "cosine"]
|
120 |
+
),
|
121 |
+
gr.inputs.Number(default=1e5, label="regularize_noise_weight"),
|
122 |
+
gr.inputs.Number(default=0.05, label="initial_noise_factor"),
|
123 |
+
],
|
124 |
+
outputs=["image", "video"],
|
125 |
+
)
|
126 |
+
iface.launch(inbrowser=True)
|
interface_old.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import pickle
|
8 |
+
import types
|
9 |
+
|
10 |
+
from huggingface_hub import hf_hub_url, cached_download
|
11 |
+
|
12 |
+
# with open('../models/gamma500/network-snapshot-010000.pkl', 'rb') as f:
|
13 |
+
with open(cached_download(hf_hub_url('ykilcher/apes', 'gamma500/network-snapshot-010000.pkl')), 'rb') as f:
|
14 |
+
G = pickle.load(f)['G_ema']# torch.nn.Module
|
15 |
+
|
16 |
+
device = torch.device("cpu")
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
device = torch.device("cuda")
|
19 |
+
G = G.to(device)
|
20 |
+
else:
|
21 |
+
_old_forward = G.forward
|
22 |
+
|
23 |
+
def _new_forward(self, *args, **kwargs):
|
24 |
+
kwargs["force_fp32"] = True
|
25 |
+
return _old_forward(*args, **kwargs)
|
26 |
+
|
27 |
+
G.forward = types.MethodType(_new_forward, G)
|
28 |
+
|
29 |
+
_old_synthesis_forward = G.synthesis.forward
|
30 |
+
|
31 |
+
def _new_synthesis_forward(self, *args, **kwargs):
|
32 |
+
kwargs["force_fp32"] = True
|
33 |
+
return _old_synthesis_forward(*args, **kwargs)
|
34 |
+
|
35 |
+
G.synthesis.forward = types.MethodType(_new_synthesis_forward, G.synthesis)
|
36 |
+
|
37 |
+
|
38 |
+
def generate(num_images, interpolate):
|
39 |
+
if interpolate:
|
40 |
+
z1 = torch.randn([1, G.z_dim])# latent codes
|
41 |
+
z2 = torch.randn([1, G.z_dim])# latent codes
|
42 |
+
zs = torch.cat([z1 + (z2 - z1) * i / (num_images-1) for i in range(num_images)], 0)
|
43 |
+
else:
|
44 |
+
zs = torch.randn([num_images, G.z_dim])# latent codes
|
45 |
+
with torch.no_grad():
|
46 |
+
zs = zs.to(device)
|
47 |
+
img = G(zs, None, force_fp32=True, noise_mode='const')
|
48 |
+
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
49 |
+
return img.cpu().numpy()
|
50 |
+
|
51 |
+
def greet(num_images, interpolate):
|
52 |
+
img = generate(round(num_images), interpolate)
|
53 |
+
imgs = list(img)
|
54 |
+
if len(imgs) == 1:
|
55 |
+
return imgs[0]
|
56 |
+
grid_len = int(np.ceil(np.sqrt(len(imgs)))) * 2
|
57 |
+
grid_height = int(np.ceil(len(imgs) / grid_len))
|
58 |
+
grid = np.zeros((grid_height * imgs[0].shape[0], grid_len * imgs[0].shape[1], 3), dtype=np.uint8)
|
59 |
+
for i, img in enumerate(imgs):
|
60 |
+
y = (i // grid_len) * img.shape[0]
|
61 |
+
x = (i % grid_len) * img.shape[1]
|
62 |
+
grid[y:y+img.shape[0], x:x+img.shape[1], :] = img
|
63 |
+
return grid
|
64 |
+
|
65 |
+
|
66 |
+
iface = gr.Interface(fn=greet, inputs=[
|
67 |
+
gr.inputs.Slider(default=1, label="Num Images", minimum=1, maximum=9, step=1),
|
68 |
+
gr.inputs.Checkbox(default=False, label="Interpolate")
|
69 |
+
], outputs="image")
|
70 |
+
iface.launch()
|
interface_projector.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import pickle
|
8 |
-
import PIL.Image
|
9 |
-
import types
|
10 |
-
|
11 |
-
from projector import project, imageio, _MODELS
|
12 |
-
|
13 |
-
from huggingface_hub import hf_hub_url, cached_download
|
14 |
-
|
15 |
-
# with open("../models/gamma500/network-snapshot-010000.pkl", "rb") as f:
|
16 |
-
# with open("../models/gamma400/network-snapshot-010600.pkl", "rb") as f:
|
17 |
-
# with open("../models/gamma400/network-snapshot-019600.pkl", "rb") as f:
|
18 |
-
with open(cached_download(hf_hub_url('ykilcher/apes', 'gamma500/network-snapshot-010000.pkl')), 'rb') as f:
|
19 |
-
G = pickle.load(f)["G_ema"] # torch.nn.Module
|
20 |
-
|
21 |
-
device = torch.device("cpu")
|
22 |
-
if torch.cuda.is_available():
|
23 |
-
device = torch.device("cuda")
|
24 |
-
G = G.to(device)
|
25 |
-
else:
|
26 |
-
_old_forward = G.forward
|
27 |
-
|
28 |
-
def _new_forward(self, *args, **kwargs):
|
29 |
-
kwargs["force_fp32"] = True
|
30 |
-
return _old_forward(*args, **kwargs)
|
31 |
-
|
32 |
-
G.forward = types.MethodType(_new_forward, G)
|
33 |
-
|
34 |
-
_old_synthesis_forward = G.synthesis.forward
|
35 |
-
|
36 |
-
def _new_synthesis_forward(self, *args, **kwargs):
|
37 |
-
kwargs["force_fp32"] = True
|
38 |
-
return _old_synthesis_forward(*args, **kwargs)
|
39 |
-
|
40 |
-
G.synthesis.forward = types.MethodType(_new_synthesis_forward, G.synthesis)
|
41 |
-
|
42 |
-
|
43 |
-
def generate(
|
44 |
-
target_image_upload,
|
45 |
-
# target_image_webcam,
|
46 |
-
num_steps,
|
47 |
-
seed,
|
48 |
-
learning_rate,
|
49 |
-
model_name,
|
50 |
-
normalize_for_clip,
|
51 |
-
loss_type,
|
52 |
-
regularize_noise_weight,
|
53 |
-
initial_noise_factor,
|
54 |
-
):
|
55 |
-
seed = round(seed)
|
56 |
-
np.random.seed(seed)
|
57 |
-
torch.manual_seed(seed)
|
58 |
-
target_image = target_image_upload
|
59 |
-
# if target_image is None:
|
60 |
-
# target_image = target_image_webcam
|
61 |
-
num_steps = round(num_steps)
|
62 |
-
print(type(target_image))
|
63 |
-
print(target_image.dtype)
|
64 |
-
print(target_image.max())
|
65 |
-
print(target_image.min())
|
66 |
-
print(target_image.shape)
|
67 |
-
target_pil = PIL.Image.fromarray(target_image).convert("RGB")
|
68 |
-
w, h = target_pil.size
|
69 |
-
s = min(w, h)
|
70 |
-
target_pil = target_pil.crop(
|
71 |
-
((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2)
|
72 |
-
)
|
73 |
-
target_pil = target_pil.resize(
|
74 |
-
(G.img_resolution, G.img_resolution), PIL.Image.LANCZOS
|
75 |
-
)
|
76 |
-
target_uint8 = np.array(target_pil, dtype=np.uint8)
|
77 |
-
target_image = torch.from_numpy(target_uint8.transpose([2, 0, 1])).to(device)
|
78 |
-
projected_w_steps = project(
|
79 |
-
G,
|
80 |
-
target=target_image,
|
81 |
-
num_steps=num_steps,
|
82 |
-
device=device,
|
83 |
-
verbose=True,
|
84 |
-
initial_learning_rate=learning_rate,
|
85 |
-
model_name=model_name,
|
86 |
-
normalize_for_clip=normalize_for_clip,
|
87 |
-
loss_type=loss_type,
|
88 |
-
regularize_noise_weight=regularize_noise_weight,
|
89 |
-
initial_noise_factor=initial_noise_factor,
|
90 |
-
)
|
91 |
-
with torch.no_grad():
|
92 |
-
video = imageio.get_writer(f'proj.mp4', mode='I', fps=10, codec='libx264', bitrate='16M')
|
93 |
-
for w in projected_w_steps:
|
94 |
-
synth_image = G.synthesis(w.to(device).unsqueeze(0), noise_mode="const")
|
95 |
-
synth_image = (synth_image + 1) * (255 / 2)
|
96 |
-
synth_image = (
|
97 |
-
synth_image.permute(0, 2, 3, 1)
|
98 |
-
.clamp(0, 255)
|
99 |
-
.to(torch.uint8)[0]
|
100 |
-
.cpu()
|
101 |
-
.numpy()
|
102 |
-
)
|
103 |
-
video.append_data(np.concatenate([target_uint8, synth_image], axis=1))
|
104 |
-
video.close()
|
105 |
-
return synth_image, "proj.mp4"
|
106 |
-
|
107 |
-
|
108 |
-
iface = gr.Interface(
|
109 |
-
fn=generate,
|
110 |
-
inputs=[
|
111 |
-
gr.inputs.Image(source="upload", optional=True),
|
112 |
-
# gr.inputs.Image(source="webcam", optional=True),
|
113 |
-
gr.inputs.Number(default=250, label="steps"),
|
114 |
-
gr.inputs.Number(default=69420, label="seed"),
|
115 |
-
gr.inputs.Number(default=0.05, label="learning_rate"),
|
116 |
-
gr.inputs.Dropdown(default='RN50', label="model_name", choices=['vgg16', *_MODELS.keys()]),
|
117 |
-
gr.inputs.Checkbox(default=True, label="normalize_for_clip"),
|
118 |
-
gr.inputs.Dropdown(
|
119 |
-
default="l2", label="loss_type", choices=["l2", "l1", "cosine"]
|
120 |
-
),
|
121 |
-
gr.inputs.Number(default=1e5, label="regularize_noise_weight"),
|
122 |
-
gr.inputs.Number(default=0.05, label="initial_noise_factor"),
|
123 |
-
],
|
124 |
-
outputs=["image", "video"],
|
125 |
-
)
|
126 |
-
iface.launch(inbrowser=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|