GunaKoppula commited on
Commit
fb40f9c
1 Parent(s): a615128

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +194 -0
app.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from base64 import b64encode
3
+
4
+ import numpy
5
+ import torch
6
+ from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
7
+ from huggingface_hub import notebook_login
8
+
9
+
10
+ # from pathlib import Path
11
+ from PIL import Image
12
+ from torch import autocast
13
+ from torchvision import transforms as tfms
14
+ from tqdm.auto import tqdm
15
+ from transformers import CLIPTextModel, CLIPTokenizer, logging
16
+ # import os
17
+
18
+ torch.manual_seed(1)
19
+
20
+ logging.set_verbosity_error()
21
+
22
+
23
+ torch_device = "cpu"
24
+
25
+ # Load the autoencoder model which will be used to decode the latents into image space.
26
+ vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
27
+
28
+ # Load the tokenizer and text encoder to tokenize and encode the text.
29
+ tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
30
+ text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
31
+
32
+ # The UNet model for generating the latents.
33
+ unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
34
+
35
+ # The noise scheduler
36
+ scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
37
+
38
+ # To the GPU we go!
39
+ vae = vae.to(torch_device)
40
+ text_encoder = text_encoder.to(torch_device)
41
+ unet = unet.to(torch_device);
42
+
43
+ token_emb_layer = text_encoder.text_model.embeddings.token_embedding
44
+ pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
45
+ position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
46
+ position_embeddings = pos_emb_layer(position_ids)
47
+
48
+ def pil_to_latent(input_im):
49
+ # Single image -> single latent in a batch (so size 1, 4, 64, 64)
50
+ with torch.no_grad():
51
+ latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
52
+ return 0.18215 * latent.latent_dist.sample()
53
+
54
+ def latents_to_pil(latents):
55
+ # bath of latents -> list of images
56
+ latents = (1 / 0.18215) * latents
57
+ with torch.no_grad():
58
+ image = vae.decode(latents).sample
59
+ image = (image / 2 + 0.5).clamp(0, 1)
60
+ image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
61
+ images = (image * 255).round().astype("uint8")
62
+ pil_images = [Image.fromarray(image) for image in images]
63
+ return pil_images
64
+
65
+ def get_output_embeds(input_embeddings):
66
+ # CLIP's text model uses causal mask, so we prepare it here:
67
+ bsz, seq_len = input_embeddings.shape[:2]
68
+ causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
69
+
70
+ # Getting the output embeddings involves calling the model with passing output_hidden_states=True
71
+ # so that it doesn't just return the pooled final predictions:
72
+ encoder_outputs = text_encoder.text_model.encoder(
73
+ inputs_embeds=input_embeddings,
74
+ attention_mask=None, # We aren't using an attention mask so that can be None
75
+ causal_attention_mask=causal_attention_mask.to(torch_device),
76
+ output_attentions=None,
77
+ output_hidden_states=True, # We want the output embs not the final output
78
+ return_dict=None,
79
+ )
80
+
81
+ # We're interested in the output hidden state only
82
+ output = encoder_outputs[0]
83
+
84
+ # There is a final layer norm we need to pass these through
85
+ output = text_encoder.text_model.final_layer_norm(output)
86
+
87
+ # And now they're ready!
88
+ return output
89
+
90
+ def generate_with_embs(text_embeddings, seed, max_length):
91
+ height = 512 # default height of Stable Diffusion
92
+ width = 512 # default width of Stable Diffusion
93
+ num_inference_steps = 30 # Number of denoising steps
94
+ guidance_scale = 7.5 # Scale for classifier-free guidance
95
+ generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
96
+ batch_size = 1
97
+
98
+ # max_length = text_input.input_ids.shape[-1]
99
+ uncond_input = tokenizer(
100
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
101
+ )
102
+ with torch.no_grad():
103
+ uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
104
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
105
+
106
+ # Prep Scheduler
107
+ set_timesteps(scheduler, num_inference_steps)
108
+
109
+ # Prep latents
110
+ latents = torch.randn(
111
+ (batch_size, unet.in_channels, height // 8, width // 8),
112
+ generator=generator,
113
+ )
114
+ latents = latents.to(torch_device)
115
+ latents = latents * scheduler.init_noise_sigma
116
+
117
+ # Loop
118
+ for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
119
+ # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
120
+ latent_model_input = torch.cat([latents] * 2)
121
+ sigma = scheduler.sigmas[i]
122
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
123
+
124
+ # predict the noise residual
125
+ with torch.no_grad():
126
+ noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
127
+
128
+ # perform guidance
129
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
130
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
131
+
132
+ # compute the previous noisy sample x_t -> x_t-1
133
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
134
+
135
+ return latents_to_pil(latents)[0]
136
+
137
+ # Prep Scheduler
138
+ def set_timesteps(scheduler, num_inference_steps):
139
+ scheduler.set_timesteps(num_inference_steps)
140
+ scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
141
+
142
+ def embed_style(prompt, style_embed, style_seed):
143
+ # Tokenize
144
+ text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
145
+ input_ids = text_input.input_ids.to(torch_device)
146
+
147
+ # Get token embeddings
148
+ token_embeddings = token_emb_layer(input_ids)
149
+
150
+
151
+ replacement_token_embedding = style_embed.to(torch_device)
152
+
153
+ # Insert this into the token embeddings
154
+ token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
155
+
156
+ # Combine with pos embs
157
+ input_embeddings = token_embeddings + position_embeddings
158
+
159
+ # Feed through to get final output embs
160
+ modified_output_embeddings = get_output_embeds(input_embeddings)
161
+
162
+ # And generate an image with this:
163
+ max_length = text_input.input_ids.shape[-1]
164
+ return generate_with_embs(modified_output_embeddings, style_seed, max_length)
165
+
166
+ def generate_image_from_prompt(text_in):
167
+ print(text_in)
168
+ generated_image = []
169
+
170
+ STYLE_LIST = ['coffeemachine.bin', 'collage_style.bin', 'cube.bin', 'jerrymouse2.bin', 'zero.bin']
171
+ STYLE_SEEDS = [32, 64, 128, 16, 8]
172
+
173
+ prompt = text_in
174
+
175
+ for idx, style_file in enumerate(STYLE_LIST):
176
+ style_seed = STYLE_SEEDS[idx]
177
+ style_dict = torch.load(style_file)
178
+ style_embed = [v for v in style_dict.values()]
179
+
180
+ generated_image.append(embed_style(prompt, style_embed[0], style_seed))
181
+
182
+ return generated_image
183
+
184
+
185
+ # Define Interface
186
+
187
+ demo = gr.Interface(fn = generate_image_from_prompt,
188
+ inputs = [gr.Textbox(1, label='Prompt'),
189
+ ],
190
+ outputs=[gr.Gallery(
191
+ label="Stable Diffusion", show_label=False, elem_id="gallery"
192
+ ).style(grid=[2], height="auto")], enable_queue=True, title="Stable Diffusion",
193
+ )
194
+ demo.launch(debug=True)