Spaces:
Sleeping
Sleeping
File size: 28,006 Bytes
23d5d20 eb00ff4 23d5d20 dfc2288 23d5d20 e1e6f2f 9e3c505 37482a6 5818aaa 407f9e3 eeab0b3 407f9e3 487344e 7ad6ce2 23d5d20 5818aaa 23d5d20 5818aaa 407f9e3 487344e 5818aaa 407f9e3 5818aaa 407f9e3 dfc2288 407f9e3 37482a6 3524f32 37482a6 3524f32 37482a6 3524f32 37482a6 3524f32 37482a6 7ad6ce2 37482a6 7ad6ce2 487344e 37482a6 487344e 37482a6 7ad6ce2 37482a6 487344e 37482a6 7ad6ce2 487344e 7ad6ce2 487344e 7ad6ce2 487344e 7ad6ce2 a3d7f9f 7ad6ce2 a3d7f9f 7ad6ce2 3e17624 7ad6ce2 3e17624 a3d7f9f 3e17624 a3d7f9f 7ad6ce2 37482a6 7ad6ce2 b337438 a3d7f9f d4e8ac0 a3d7f9f 487344e a3d7f9f 487344e a3d7f9f 3e17624 a3d7f9f 487344e a3d7f9f b337438 a3d7f9f 3e17624 b337438 3e17624 b337438 a3d7f9f 487344e a3d7f9f 3e17624 a3d7f9f 487344e a3d7f9f d4e8ac0 a3d7f9f 036735b 23d5d20 5818aaa e1e6f2f da70a42 5818aaa e1e6f2f 5818aaa 3cbcbb2 5818aaa 3cbcbb2 5818aaa 036735b 3cbcbb2 036735b 3cbcbb2 5818aaa 3cbcbb2 5818aaa 3cbcbb2 036735b 37482a6 a3d7f9f 37482a6 a3d7f9f 7ad6ce2 a3d7f9f 37482a6 a3d7f9f 7ad6ce2 a3d7f9f 37482a6 a3d7f9f 7ad6ce2 a3d7f9f 2239770 a3d7f9f b337438 a3d7f9f 2239770 a3d7f9f b337438 a3d7f9f 2239770 a3d7f9f 2239770 a3d7f9f 2239770 a3d7f9f 2239770 a3d7f9f 487344e 2239770 487344e ae878bc 23d5d20 3524f32 23d5d20 ae878bc e1e6f2f ae878bc 3cbcbb2 690792e 407f9e3 ae878bc 690792e 3524f32 3cbcbb2 690792e a3d7f9f 5818aaa ae878bc a3d7f9f 3cbcbb2 23d5d20 690792e ae878bc 3524f32 ae878bc 23d5d20 ae878bc 5818aaa 23d5d20 e1e6f2f 23d5d20 8cc9d52 5818aaa 407f9e3 23d5d20 407f9e3 23d5d20 5818aaa 23d5d20 0f7e8af 23d5d20 857d5c4 3faabb6 857d5c4 8cc9d52 857d5c4 06b65a8 8cc9d52 23d5d20 0f7e8af 23d5d20 8cc9d52 df7678c 8cc9d52 0f7e8af 8cc9d52 df7678c 8cc9d52 e1e6f2f 23d5d20 487344e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
import gradio as gr
from openai import OpenAI
import requests
import json
import httpx
import os
import logging
from fake_useragent import UserAgent
from typing import Optional, List, Dict, Tuple
from itertools import cycle
from datetime import datetime
from bs4 import BeautifulSoup
from googlesearch import search
from newsapi import NewsApiClient
import markdown
import re
import time
import random
from tenacity import retry, wait_exponential, stop_after_attempt
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class RaindropSearchBot:
def __init__(self):
self.openai_api_key = os.getenv('openaikey')
self.raindrop_api_token = os.getenv('raindroptoken')
self.newsapi_key = os.getenv('newsapikey')
if not all([self.openai_api_key, self.raindrop_api_token, self.newsapi_key]):
raise EnvironmentError(
"Missing required environment variables. Please ensure all API keys are set."
)
# Updated OpenAI client initialization
self.client = OpenAI(
api_key=self.openai_api_key,
http_client=httpx.Client(
timeout=60.0,
follow_redirects=True
)
)
self.newsapi = NewsApiClient(api_key=self.newsapi_key)
self.min_delay = 5 # Increased minimum delay
self.max_delay = 15 # Increased maximum delay
self.ua = UserAgent()
self.setup_proxies()
def get_next_proxy(self) -> dict:
"""Get next proxy from the rotation"""
try:
proxy = next(self.proxy_cycle)
return {
'http': proxy,
'https': proxy
}
except StopIteration:
logger.warning("No proxies available, returning empty proxy dict")
return {}
def get_alternative_search_results(self, query: str) -> List[Dict]:
"""Implement alternative search engine if Google fails"""
try:
from duckduckgo_search import DDGS
self.random_delay()
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=5))
return [{
'title': result.get('title', ''),
'link': result.get('link', ''),
'snippet': result.get('body', '')
} for result in results]
except Exception as e:
logger.error(f"Alternative search failed: {e}")
return []
def search_with_fallback(self, query: str) -> List[Dict]:
"""Search with fallback to alternative search engines"""
try:
return self.get_google_results(query)
except Exception as e:
logger.warning(f"Google search failed: {e}")
try:
# Implement alternative search engine here
# For example: DuckDuckGo, Bing, etc.
return self.get_alternative_search_results(query)
except Exception as e:
logger.error(f"All search attempts failed: {e}")
return []
def setup_proxies(self):
"""Setup proxy rotation"""
# Free proxy list - replace with your paid proxy service for better reliability
self.proxies = [
'http://proxy1.example.com:8080',
'http://proxy2.example.com:8080',
# Add more proxies here
]
self.proxy_cycle = cycle(self.proxies)
def random_delay(self):
"""Enhanced random delay with jitter"""
base_delay = random.uniform(self.min_delay, self.max_delay)
jitter = random.uniform(-1, 1) # Add/subtract up to 1 second
delay = max(0, base_delay + jitter)
time.sleep(delay)
def get_google_results(self, query: str, num_results: int = 5) -> List[Dict]:
"""Get Google search results with improved handling"""
try:
search_results = []
session = self.create_session()
# Break the search into smaller chunks
chunk_size = 3
for i in range(0, num_results, chunk_size):
# Add substantial random delay between chunks
self.random_delay()
try:
chunk_results = list(search(
query,
num_results=min(chunk_size, num_results - i),
advanced=True,
lang="en",
sleep_interval=random.uniform(5, 10), # Random delay between requests
timeout=30
))
for result in chunk_results:
search_results.append({
'title': result.title,
'link': result.url,
'snippet': result.description
})
# Add random delay between chunks
time.sleep(random.uniform(8, 15))
except Exception as e:
logger.warning(f"Error in search chunk {i}: {e}")
continue
return search_results
except Exception as e:
logger.error(f"Google search error: {e}")
raise
def get_news_results(self, query: str, num_results: int = 5) -> List[Dict]:
"""Get news articles using NewsAPI with retry and delay."""
try:
# Add random delay before making the request
self.random_delay()
news_results = self.newsapi.get_everything(
q=query,
language='en',
sort_by='relevancy',
page_size=num_results
)
return news_results.get('articles', [])
except Exception as e:
logger.error(f"News API error: {e}")
return []
@retry(wait=wait_exponential(multiplier=1, min=4, max=10),
stop=stop_after_attempt(3))
def extract_content_from_url(self, url: str) -> Optional[str]:
"""Extract main content from a URL using BeautifulSoup with retry and delay."""
try:
# Add random delay before making the request
self.random_delay()
headers = {
'User-Agent': self.get_random_user_agent(),
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate, br',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove unwanted elements
for element in soup(['script', 'style', 'nav', 'header', 'footer', 'iframe']):
element.decompose()
# Get title
title = soup.title.string if soup.title else ''
# Get main content
# First try common content containers
content_containers = soup.select('article, main, .content, .post-content, .entry-content')
if content_containers:
content = content_containers[0].get_text(separator='\n', strip=True)
else:
# Fallback to all paragraphs
paragraphs = soup.find_all('p')
content = '\n'.join(p.get_text(strip=True) for p in paragraphs)
# Combine and clean
full_content = f"{title}\n\n{content}"
# Clean up the text
full_content = re.sub(r'\n\s*\n', '\n\n', full_content) # Remove extra newlines
full_content = re.sub(r'\s+', ' ', full_content) # Normalize whitespace
return full_content if full_content.strip() else None
except Exception as e:
logger.error(f"Error extracting content from {url}: {e}")
return None
def get_random_user_agent(self) -> str:
"""Get random user agent using fake-useragent"""
return self.ua.random
def create_session(self) -> requests.Session:
"""Create a session with random user agent and proxy"""
session = requests.Session()
session.headers.update({
'User-Agent': self.get_random_user_agent(),
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate, br',
'DNT': '1',
'Connection': 'keep-alive',
'Upgrade-Insecure-Requests': '1',
'Sec-Fetch-Dest': 'document',
'Sec-Fetch-Mode': 'navigate',
'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'Cache-Control': 'max-age=0'
})
session.proxies = self.get_next_proxy()
return session
@retry(
wait=wait_exponential(multiplier=1, min=4, max=20),
stop=stop_after_attempt(3),
reraise=True
)
def get_content_and_summary(self, request: str, item: Dict, source_type: str) -> Dict:
"""Get content and generate summary for a single item."""
try:
# Get URL based on source type
url = item.get('link') or item.get('url')
if not url:
logger.warning(f"No URL found in item from {source_type}")
return item
# For Raindrop items, use existing excerpt if available
if source_type == 'raindrop' and item.get('excerpt'):
content = item['excerpt']
else:
content = self.extract_content_from_url(url)
if not content:
logger.warning(f"No content extracted from {url}")
item['detailed_summary'] = "Content extraction failed."
return item
# Generate summary focused on the query topic
try:
prompt = f"""
Analyze this content and provide a detailed summary focusing on key points related to the user request:
{request}
Content: {content[:4000]} # Limit content length for token constraints
Requirements:
1. Focus on the most important facts and findings related to the topic
2. Include specific data points and quotes if relevant
3. Organize the information logically
4. Keep the summary to 2-3 paragraphs
5. Highlight any unique insights from this source
6. No need to add a conclusion
"""
response = self.client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
max_tokens=300
)
item['detailed_summary'] = response.choices[0].message.content
item['processed_content'] = content[:1000] # Store truncated content for later use
except Exception as e:
logger.error(f"Error generating summary: {e}")
item['detailed_summary'] = "Summary generation failed."
return item
except Exception as e:
logger.error(f"Error processing item from {source_type}: {e}")
return item
def search_raindrop(self, search_query: str) -> List[Dict]:
"""Search Raindrop.io with enhanced error handling and logging."""
logger.info(f"Searching Raindrop with query: {search_query}")
headers = {
"Authorization": f"Bearer {self.raindrop_api_token}"
}
# Test API connection first
try:
test_response = requests.get(
"https://api.raindrop.io/rest/v1/user",
headers=headers
)
if test_response.status_code != 200:
logger.error(f"API test failed: {test_response.status_code}")
return []
except Exception as e:
logger.error(f"API connection error: {e}")
return []
# Perform search
try:
params = {
"search": search_query,
"perpage": 50,
"sort": "-created",
"page": 0
}
response = requests.get(
"https://api.raindrop.io/rest/v1/raindrops/0",
headers=headers,
params=params
)
if response.status_code == 200:
data = response.json()
items = data.get("items", [])
logger.info(f"Found {len(items)} results")
return items
else:
logger.error(f"Search failed: {response.status_code}")
return []
except Exception as e:
logger.error(f"Search error: {e}")
return []
def process_all_results(self, request, raindrop_results: List[Dict],
google_results: List[Dict],
news_results: List[Dict]) -> Tuple[List[Dict], List[Dict], List[Dict]]:
"""Process and enrich all results with content and summaries."""
processed_raindrop = []
for item in raindrop_results:
processed_item = self.get_content_and_summary(request, item, 'raindrop')
if processed_item.get('detailed_summary'):
processed_raindrop.append(processed_item)
# Add delay between processing items
self.random_delay()
processed_google = []
for item in google_results:
processed_item = self.get_content_and_summary(request, item, 'google')
if processed_item.get('detailed_summary'):
processed_google.append(processed_item)
# Add delay between processing items
self.random_delay()
processed_news = []
for item in news_results:
processed_item = self.get_content_and_summary(request, item, 'news')
if processed_item.get('detailed_summary'):
processed_news.append(processed_item)
# Add delay between processing items
self.random_delay()
return processed_raindrop, processed_google, processed_news
def generate_essay_response(self, results: Tuple[List[Dict], List[Dict], List[Dict]],
user_query: str) -> str:
"""Generate a structured essay-style response with references."""
raindrop_results, google_results, news_results = results
# Collect all content for analysis
all_content = ""
reference_map = {}
ref_counter = 1
def get_url(item):
"""Helper function to get URL from item regardless of field name"""
if 'link' in item:
return item['link']
elif 'url' in item:
return item['url']
return None
# Process Raindrop results
for item in raindrop_results:
url = get_url(item)
if url and item.get('detailed_summary'):
all_content += f"\n{item['detailed_summary']}\n"
reference_map[url] = ref_counter
ref_counter += 1
# Process Google results
for item in google_results:
url = get_url(item)
if url and item.get('detailed_summary'):
all_content += f"\n{item['detailed_summary']}\n"
reference_map[url] = ref_counter
ref_counter += 1
# Process News results
for item in news_results:
url = get_url(item)
if url and item.get('detailed_summary'):
all_content += f"\n{item['detailed_summary']}\n"
reference_map[url] = ref_counter
ref_counter += 1
try:
prompt = f"""
Create a comprehensive essay-style analysis about: {user_query}
Use this content as your reference source material:
{all_content}
Requirements:
1. Structure the response in clear sections with markdown headers
2. Include an introduction and conclusion
3. Use reference numbers [n] to cite sources
4. Make connections between different sources
5. Highlight key findings and trends
6. Address any contradictions or gaps
7. Use markdown formatting for better readability
Format the response as a proper academic essay with sections and sources.
"""
response = self.client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0.5,
max_tokens=1500
)
essay = response.choices[0].message.content
# Replace reference placeholders with actual reference numbers
for url, ref_num in reference_map.items():
essay = essay.replace(f'[URL:{url}]', f'[{ref_num}]')
return essay
except Exception as e:
logger.error(f"Error generating essay: {e}")
return "Error generating analysis."
def format_results(self, results: Tuple[List[Dict], List[Dict], List[Dict]],
essay: str) -> str:
"""Format the essay and results with detailed summaries."""
raindrop_results, google_results, news_results = results
output = f"{essay}\n\n"
output += "---\n\n"
output += "# References and Detailed Summaries\n\n"
ref_counter = 1
# Format Raindrop results
if raindrop_results:
output += "## π Bookmarked Sources\n\n"
for item in raindrop_results:
output += f"### [{ref_counter}] {item.get('title', 'No Title')}\n"
output += f"**Link**: {item.get('link')}\n"
if item.get('tags'):
output += f"**Tags**: {', '.join(item['tags'])}\n"
if item.get('created'):
output += f"**Created**: {item['created'][:10]}\n"
output += "\n**Summary**:\n"
output += f"{item.get('detailed_summary', 'No summary available.')}\n\n"
ref_counter += 1
# Format Google results
if google_results:
output += "## π Web Sources\n\n"
for item in google_results:
output += f"### [{ref_counter}] {item.get('title', 'No Title')}\n"
output += f"**Link**: {item.get('link')}\n"
output += "\n**Summary**:\n"
output += f"{item.get('detailed_summary', 'No summary available.')}\n\n"
ref_counter += 1
# Format News results
if news_results:
output += "## π° Recent News\n\n"
for item in news_results:
output += f"### [{ref_counter}] {item.get('title', 'No Title')}\n"
output += f"**Link**: {item.get('url')}\n"
if item.get('source', {}).get('name'):
output += f"**Source**: {item['source']['name']}\n"
if item.get('publishedAt'):
output += f"**Published**: {item['publishedAt'][:10]}\n"
output += "\n**Summary**:\n"
output += f"{item.get('detailed_summary', 'No summary available.')}\n\n"
ref_counter += 1
return output
def process_request(self, user_request: str) -> str:
"""Process user request with improved error handling and query generation."""
try:
# Generate optimized search query
search_query = self.generate_search_queries(user_request)
logger.info(f"Processing request: {search_query}")
# Get search results with fallback
google_results = self.search_with_fallback(search_query)
# Add delay before news API call
self.random_delay()
# Get news results
news_results = self.get_news_results(search_query)
# Process all results - Fix: Pass the user_request as first argument
processed_results = self.process_all_results(
request=user_request,
raindrop_results=[], # Empty list for raindrop results
google_results=google_results,
news_results=news_results
)
# Generate response
essay = self.generate_essay_response(processed_results, user_request)
# Format and return results
return self.format_results(processed_results, essay)
except Exception as e:
logger.error(f"Error processing request: {e}")
return f"""
An error occurred while processing your request: {str(e)}
Please try again with a different search query or contact support if the problem persists.
"""
def generate_search_queries(self, user_request: str) -> str:
"""
Generate optimized search queries from user request.
Args:
user_request (str): The original user query
Returns:
str: Optimized search query
"""
try:
# Clean and preprocess the user request
cleaned_request = self.preprocess_query(user_request)
# Generate search query using GPT
prompt = f"""
Convert this search request into an optimized search query using proper search operators.
Request: {cleaned_request}
Guidelines:
- Focus on key concepts and synonyms
- Use combination of keywords that would appear in titles or descriptions
- Return only the search terms, no explanation
- Include alternative phrasings
- Keep it concise (max 6-8 key terms/phrases)
- use the formatting authorised in raindrop search:
o use " for exact search (ex: "artificial intelligence")
o use - to exclude some terms (ex: -math) // Do not exclude terms that are potentially relevant
o use match:OR for alternatives (ex: apple match:OR banana )
o use match:AND for inclusion of both cases systematically (ex: apple match:AND banana )
o use parenthesis for combinations ( ex: sugar match:AND (banana match:OR apple) )
Example elaborate request: ("artificial intelligence" match:OR AI) -"machine learning"
Use your judgement, think step by steps.
Return only the search query terms.
"""
response = self.client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0.3,
max_tokens=100
)
optimized_query = response.choices[0].message.content.strip()
logger.info(f"Generated search query: {optimized_query}")
return optimized_query
except Exception as e:
logger.error(f"Error generating search queries: {e}")
# Fallback to using the original request if query generation fails
return user_request
def preprocess_query(self, query: str) -> str:
"""
Preprocess the user query to remove unnecessary elements and standardize format.
Args:
query (str): Original query string
Returns:
str: Cleaned query string
"""
try:
# Convert to lowercase
query = query.lower()
# Remove extra whitespace
query = ' '.join(query.split())
# Remove special characters except basic punctuation
query = re.sub(r'[^a-z0-9\s\'".,?!-]', '', query)
# Remove multiple punctuation marks
query = re.sub(r'([.,?!])\1+', r'\1', query)
# Ensure proper spacing around quotes
query = re.sub(r'(?<=[^\s])"', ' "', query)
query = re.sub(r'"(?=[^\s])', '" ', query)
return query
except Exception as e:
logger.error(f"Error preprocessing query: {e}")
return query
# Initialize bot
bot = RaindropSearchBot()
# Create Gradio interface
def chatbot_interface(user_input: str) -> str:
return bot.process_request(user_input)
def convert_to_markdown(output_text: str) -> gr.Markdown:
try:
# Create a new Gradio Markdown component with the output text
output_textMarkdown = gr.Markdown(
value=output_text,
render=True,
visible=True
)
return output_textMarkdown
except Exception as e:
logger.error(f"Error converting to markdown: {e}")
# Return error message as markdown if conversion fails
return gr.Markdown(
value="Error converting content to markdown format. Please try again.",
visible=True
)
# Define and launch the interface
with gr.Blocks(title="Enhanced Search Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Enhanced Search Assistant
Enter your search request in natural language, and I'll find and analyze information from multiple sources:
- Your bookmarked content
- Web search results
- Recent news articles
""")
with gr.Row():
input_text = gr.Textbox(
label="What would you like to search for?",
placeholder="Enter your search query here...",
lines=2
)
with gr.Row():
searchbutton = gr.Button("π Search", variant="primary")
with gr.Column():
with gr.Accordion("Editable version", open=False):
with gr.Column():
output_text = gr.Textbox(
label="Analysis and Results - editable",
lines=20,
interactive=True
)
refreshbutton = gr.Button("Refresh", variant="primary")
output_textMarkdown = gr.Markdown(
label="Analysis and Results",
height=600,
max_height=800
)
searchbutton.click(
fn=chatbot_interface,
inputs=input_text,
outputs=output_text
).then(
fn=convert_to_markdown,
inputs=output_text,
outputs=output_textMarkdown)
refreshbutton.click(
fn=convert_to_markdown,
inputs=output_text,
outputs=output_textMarkdown)
# Launch the interface
if __name__ == "__main__":
demo.launch(share=True)
|