Added cosine similarity front-end
Browse files- app.py +24 -6
- word2vec.py +30 -7
app.py
CHANGED
@@ -15,7 +15,7 @@ if active_tab == "Nearest neighbours":
|
|
15 |
col1, col2 = st.columns(2)
|
16 |
with st.container():
|
17 |
with col1:
|
18 |
-
word = st.text_input("Enter a word", placeholder="
|
19 |
|
20 |
with col2:
|
21 |
time_slice = st.selectbox("Time slice", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
@@ -52,14 +52,32 @@ if active_tab == "Nearest neighbours":
|
|
52 |
df = pd.DataFrame(nearest_neighbours, columns=["Word", "Time slice", "Similarity"])
|
53 |
st.table(df)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
# Cosine similarity tab
|
60 |
elif active_tab == "Cosine similarity":
|
|
|
|
|
61 |
with st.container():
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# 3D graph tab
|
65 |
elif active_tab == "3D graph":
|
|
|
15 |
col1, col2 = st.columns(2)
|
16 |
with st.container():
|
17 |
with col1:
|
18 |
+
word = st.text_input("Enter a word", placeholder="πατήρ")
|
19 |
|
20 |
with col2:
|
21 |
time_slice = st.selectbox("Time slice", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
|
|
52 |
df = pd.DataFrame(nearest_neighbours, columns=["Word", "Time slice", "Similarity"])
|
53 |
st.table(df)
|
54 |
|
55 |
+
|
|
|
|
|
|
|
56 |
# Cosine similarity tab
|
57 |
elif active_tab == "Cosine similarity":
|
58 |
+
col1, col2 = st.columns(2)
|
59 |
+
col3, col4 = st.columns(2)
|
60 |
with st.container():
|
61 |
+
with col1:
|
62 |
+
word_1 = st.text_input("Enter a word", placeholder="πατήρ")
|
63 |
+
|
64 |
+
with col2:
|
65 |
+
time_slice_1 = st.selectbox("Time slice word 1", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
66 |
+
|
67 |
+
with st.container():
|
68 |
+
with col3:
|
69 |
+
word_2 = st.text_input("Enter a word", placeholder="μήτηρ")
|
70 |
+
|
71 |
+
with col4:
|
72 |
+
time_slice_2 = st.selectbox("Time slice word 2", ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"])
|
73 |
+
|
74 |
+
# Create button for calculating cosine similarity
|
75 |
+
cosine_similarity_button = st.button("Calculate cosine similarity")
|
76 |
+
|
77 |
+
# If the button is clicked, execute calculation
|
78 |
+
if cosine_similarity_button:
|
79 |
+
cosine_simularity_score = get_cosine_similarity(word_1, time_slice_1, word_2, time_slice_2)
|
80 |
+
st.write(cosine_simularity_score)
|
81 |
|
82 |
# 3D graph tab
|
83 |
elif active_tab == "3D graph":
|
word2vec.py
CHANGED
@@ -104,19 +104,27 @@ def cosine_similarity(vector_a, vector_b):
|
|
104 |
return "{:.2f}".format(similarity)
|
105 |
|
106 |
|
107 |
-
def get_cosine_similarity(word1, word2,
|
108 |
'''
|
109 |
Return the cosine similarity of two words
|
110 |
'''
|
111 |
# TO DO: MOET NETTER
|
112 |
|
113 |
# Return if path does not exist
|
114 |
-
if not os.path.exists(f'models/{time_slice}.model'):
|
115 |
-
return
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
|
122 |
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
@@ -163,6 +171,21 @@ def convert_model_to_time_name(model_name):
|
|
163 |
return 'Late Roman'
|
164 |
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models()):
|
167 |
'''
|
168 |
Return the nearest neighbours of a word
|
@@ -241,7 +264,7 @@ def main():
|
|
241 |
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
|
242 |
|
243 |
models = [archaic, classical, early_roman, hellen, late_roman]
|
244 |
-
nearest_neighbours = get_nearest_neighbours('πατήρ',
|
245 |
print(nearest_neighbours)
|
246 |
# vector = get_word_vector(model, 'ἀνήρ')
|
247 |
# print(vector)
|
|
|
104 |
return "{:.2f}".format(similarity)
|
105 |
|
106 |
|
107 |
+
def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
|
108 |
'''
|
109 |
Return the cosine similarity of two words
|
110 |
'''
|
111 |
# TO DO: MOET NETTER
|
112 |
|
113 |
# Return if path does not exist
|
|
|
|
|
114 |
|
115 |
+
time_slice_1 = convert_time_name_to_model(time_slice_1)
|
116 |
+
time_slice_2 = convert_time_name_to_model(time_slice_2)
|
117 |
+
|
118 |
+
if not os.path.exists(f'models/{time_slice_1}.model'):
|
119 |
+
return
|
120 |
+
|
121 |
+
model_1 = load_word2vec_model(f'models/{time_slice_1}.model')
|
122 |
+
model_2 = load_word2vec_model(f'models/{time_slice_2}.model')
|
123 |
+
|
124 |
+
dict_1 = model_dictionary(model_1)
|
125 |
+
dict_2 = model_dictionary(model_2)
|
126 |
+
|
127 |
+
return cosine_similarity(dict_1[word1], dict_2[word2])
|
128 |
|
129 |
|
130 |
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
|
|
|
171 |
return 'Late Roman'
|
172 |
|
173 |
|
174 |
+
def convert_time_name_to_model(time_name):
|
175 |
+
'''
|
176 |
+
Convert the time slice name to the model name
|
177 |
+
'''
|
178 |
+
if time_name == 'Archaic':
|
179 |
+
return 'archaic_cbow'
|
180 |
+
elif time_name == 'Classical':
|
181 |
+
return 'classical_cbow'
|
182 |
+
elif time_name == 'Early Roman':
|
183 |
+
return 'early_roman_cbow'
|
184 |
+
elif time_name == 'Hellenistic':
|
185 |
+
return 'hellen_cbow'
|
186 |
+
elif time_name == 'Late Roman':
|
187 |
+
return 'late_roman_cbow'
|
188 |
+
|
189 |
def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models()):
|
190 |
'''
|
191 |
Return the nearest neighbours of a word
|
|
|
264 |
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
|
265 |
|
266 |
models = [archaic, classical, early_roman, hellen, late_roman]
|
267 |
+
nearest_neighbours = get_nearest_neighbours('πατήρ', 'archaic_cbow', n=5)
|
268 |
print(nearest_neighbours)
|
269 |
# vector = get_word_vector(model, 'ἀνήρ')
|
270 |
# print(vector)
|