Mark7549 commited on
Commit
a1d0fa4
·
1 Parent(s): 703ce10

Added some text underneath the headers of the tabs

Browse files
Files changed (1) hide show
  1. app.py +15 -1
app.py CHANGED
@@ -98,6 +98,7 @@ if active_tab == "Nearest neighbours":
98
 
99
  with st.container():
100
  st.markdown("## Nearest Neighbours")
 
101
  target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
102
  if len(target_word) > 0:
103
  target_word = target_word[0]
@@ -159,6 +160,7 @@ elif active_tab == "Cosine similarity":
159
  eligible_models_1 = []
160
  eligible_models_2 = []
161
  st.markdown("## Cosine similarity")
 
162
  col1, col2 = st.columns(2)
163
  col3, col4 = st.columns(2)
164
  with col1:
@@ -191,6 +193,9 @@ elif active_tab == "Cosine similarity":
191
 
192
  # 3D graph tab
193
  elif active_tab == "3D graph":
 
 
 
194
  col1, col2 = st.columns(2)
195
 
196
  # Load compressed word list
@@ -231,11 +236,15 @@ elif active_tab == "3D graph":
231
  elif active_tab == "Dictionary":
232
 
233
  with st.container():
 
 
 
 
234
  all_lemmas = load_all_lemmas()
235
 
236
  # query_word = st.multiselect("Search a word in the LSJ dictionary", all_lemmas, max_selections=1)
237
 
238
- query_tag = st_tags(label = 'Search a word in the LSJ dictionary',
239
  text = '',
240
  value = [],
241
  suggestions = all_lemmas,
@@ -331,6 +340,11 @@ elif active_tab == "FAQ":
331
  (in this interface, we focus on the extraction of semantic information) or to perform specific linguistic tasks. \
332
  The models on which this interface is based are Word Embedding models."
333
  )
 
 
 
 
 
334
 
335
 
336
 
 
98
 
99
  with st.container():
100
  st.markdown("## Nearest Neighbours")
101
+ st.markdown('###### Here you can extract the nearest neighbours to a chosen lemma. Please select one or more time slices and the preferred number of nearest neighbours.')
102
  target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
103
  if len(target_word) > 0:
104
  target_word = target_word[0]
 
160
  eligible_models_1 = []
161
  eligible_models_2 = []
162
  st.markdown("## Cosine similarity")
163
+ st.markdown('###### Here you can extract the cosine similarity between two lemmas. Please select a time slice for each lemma. You can also calculate the cosine similarity between two vectors of the same lemma in different time slices.')
164
  col1, col2 = st.columns(2)
165
  col3, col4 = st.columns(2)
166
  with col1:
 
193
 
194
  # 3D graph tab
195
  elif active_tab == "3D graph":
196
+ st.markdown("## 3D graph")
197
+ st.markdown('###### Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.')
198
+
199
  col1, col2 = st.columns(2)
200
 
201
  # Load compressed word list
 
236
  elif active_tab == "Dictionary":
237
 
238
  with st.container():
239
+ st.markdown('## Dictionary')
240
+ st.markdown('###### Search a word in the Liddell-Scott-Jones dictionary (only Greek, no whitespaces).')
241
+
242
+
243
  all_lemmas = load_all_lemmas()
244
 
245
  # query_word = st.multiselect("Search a word in the LSJ dictionary", all_lemmas, max_selections=1)
246
 
247
+ query_tag = st_tags(label='',
248
  text = '',
249
  value = [],
250
  suggestions = all_lemmas,
 
340
  (in this interface, we focus on the extraction of semantic information) or to perform specific linguistic tasks. \
341
  The models on which this interface is based are Word Embedding models."
342
  )
343
+
344
+ with st.expander("Which corpus was used to train the models?"):
345
+ st.write(
346
+ "The five models on which this interface is based were trained on five slices of the Diorisis Ancient Greek Corpus (Vatri & McGillivray 2018)."
347
+ )
348
 
349
 
350