Added some text underneath the headers of the tabs
Browse files
app.py
CHANGED
@@ -98,6 +98,7 @@ if active_tab == "Nearest neighbours":
|
|
98 |
|
99 |
with st.container():
|
100 |
st.markdown("## Nearest Neighbours")
|
|
|
101 |
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
102 |
if len(target_word) > 0:
|
103 |
target_word = target_word[0]
|
@@ -159,6 +160,7 @@ elif active_tab == "Cosine similarity":
|
|
159 |
eligible_models_1 = []
|
160 |
eligible_models_2 = []
|
161 |
st.markdown("## Cosine similarity")
|
|
|
162 |
col1, col2 = st.columns(2)
|
163 |
col3, col4 = st.columns(2)
|
164 |
with col1:
|
@@ -191,6 +193,9 @@ elif active_tab == "Cosine similarity":
|
|
191 |
|
192 |
# 3D graph tab
|
193 |
elif active_tab == "3D graph":
|
|
|
|
|
|
|
194 |
col1, col2 = st.columns(2)
|
195 |
|
196 |
# Load compressed word list
|
@@ -231,11 +236,15 @@ elif active_tab == "3D graph":
|
|
231 |
elif active_tab == "Dictionary":
|
232 |
|
233 |
with st.container():
|
|
|
|
|
|
|
|
|
234 |
all_lemmas = load_all_lemmas()
|
235 |
|
236 |
# query_word = st.multiselect("Search a word in the LSJ dictionary", all_lemmas, max_selections=1)
|
237 |
|
238 |
-
query_tag = st_tags(label
|
239 |
text = '',
|
240 |
value = [],
|
241 |
suggestions = all_lemmas,
|
@@ -331,6 +340,11 @@ elif active_tab == "FAQ":
|
|
331 |
(in this interface, we focus on the extraction of semantic information) or to perform specific linguistic tasks. \
|
332 |
The models on which this interface is based are Word Embedding models."
|
333 |
)
|
|
|
|
|
|
|
|
|
|
|
334 |
|
335 |
|
336 |
|
|
|
98 |
|
99 |
with st.container():
|
100 |
st.markdown("## Nearest Neighbours")
|
101 |
+
st.markdown('###### Here you can extract the nearest neighbours to a chosen lemma. Please select one or more time slices and the preferred number of nearest neighbours.')
|
102 |
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
103 |
if len(target_word) > 0:
|
104 |
target_word = target_word[0]
|
|
|
160 |
eligible_models_1 = []
|
161 |
eligible_models_2 = []
|
162 |
st.markdown("## Cosine similarity")
|
163 |
+
st.markdown('###### Here you can extract the cosine similarity between two lemmas. Please select a time slice for each lemma. You can also calculate the cosine similarity between two vectors of the same lemma in different time slices.')
|
164 |
col1, col2 = st.columns(2)
|
165 |
col3, col4 = st.columns(2)
|
166 |
with col1:
|
|
|
193 |
|
194 |
# 3D graph tab
|
195 |
elif active_tab == "3D graph":
|
196 |
+
st.markdown("## 3D graph")
|
197 |
+
st.markdown('###### Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.')
|
198 |
+
|
199 |
col1, col2 = st.columns(2)
|
200 |
|
201 |
# Load compressed word list
|
|
|
236 |
elif active_tab == "Dictionary":
|
237 |
|
238 |
with st.container():
|
239 |
+
st.markdown('## Dictionary')
|
240 |
+
st.markdown('###### Search a word in the Liddell-Scott-Jones dictionary (only Greek, no whitespaces).')
|
241 |
+
|
242 |
+
|
243 |
all_lemmas = load_all_lemmas()
|
244 |
|
245 |
# query_word = st.multiselect("Search a word in the LSJ dictionary", all_lemmas, max_selections=1)
|
246 |
|
247 |
+
query_tag = st_tags(label='',
|
248 |
text = '',
|
249 |
value = [],
|
250 |
suggestions = all_lemmas,
|
|
|
340 |
(in this interface, we focus on the extraction of semantic information) or to perform specific linguistic tasks. \
|
341 |
The models on which this interface is based are Word Embedding models."
|
342 |
)
|
343 |
+
|
344 |
+
with st.expander("Which corpus was used to train the models?"):
|
345 |
+
st.write(
|
346 |
+
"The five models on which this interface is based were trained on five slices of the Diorisis Ancient Greek Corpus (Vatri & McGillivray 2018)."
|
347 |
+
)
|
348 |
|
349 |
|
350 |
|