ysharma's picture
ysharma HF staff
Create app.py
eed5e87 verified
raw
history blame
6.86 kB
from typing import Tuple
import uuid
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline
from gradio_client import Client, handle_file
from PIL import Image
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MARKDOWN = """
# FLUX.1 Inpainting with Text guided Mask🔥
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
for taking it to the next level by enabling inpainting with the FLUX.
"""
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Using Gradio Python Client to query EVF-SAM demo, hosted on SPaces, as an endpoint
client = Client("ysharma/evf-sam", hf_token=HF_TOKEN)
pipe = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = 2048
) -> Tuple[int, int]:
width, height = original_resolution_wh
if width <= maximum_dimension and height <= maximum_dimension:
width = width - (width % 32)
height = height - (height % 32)
return width, height
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
def evf_sam_mask(image, prompt):
print(type(image))
filename=str(uuid.uuid4()) + ".jpg"
image.save(filename)
images = client.predict(
image_np=handle_file(filename),
prompt=prompt,
api_name="/predict")
print(images)
# Open the image
webp_image = Image.open(images[1])
# Convert to RGB mode if it's not already
if webp_image.mode != 'RGB':
webp_image = webp_image.convert('RGB')
# Create a new PIL Image object
pil_image = Image.new('RGB', webp_image.size)
pil_image.paste(webp_image)
print(pil_image)
print(type(pil_image))
return pil_image
@spaces.GPU(duration=150)
def process(
input_image_editor: dict,
input_text: str,
inpaint_text: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
progress=gr.Progress(track_tqdm=True)
):
if not input_text:
gr.Info("Please enter a text prompt.")
return None
image = input_image_editor['background']
#mask = input_image_editor['layers'][0]
print(f"type of image: {type(image)}")
mask = evf_sam_mask(image, input_text)
print(f"type of mask: {type(mask)}")
print(f"inpaint_text: {inpaint_text}")
print(f"input_text: {input_text}")
if not image:
gr.Info("Please upload an image.")
return None
if not mask:
gr.Info("Please draw a mask on the image.")
return None
width, height = resize_image_dimensions(original_resolution_wh=image.size)
resized_image = image.resize((width, height), Image.LANCZOS)
resized_mask = mask.resize((width, height), Image.NEAREST)
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
result = pipe(
prompt=inpaint_text,
image=resized_image,
mask_image=resized_mask,
width=width,
height=height,
strength=strength_slider,
generator=generator,
num_inference_steps=num_inference_steps_slider
).images[0]
print('INFERENCE DONE')
return result, resized_mask
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image_editor_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
with gr.Row():
with gr.Column():
input_text_component = gr.Text(
label="Segment",
show_label=False,
max_lines=1,
placeholder="segmentation text",
container=False,
)
inpaint_text_component = gr.Text(
label="Inpaint",
show_label=False,
max_lines=1,
placeholder="Inpaint text",
container=False,
)
submit_button_component = gr.Button(value='Submit', variant='primary', scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=False)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.75,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image')
with gr.Accordion("Generated Mask", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask')
submit_button_component.click(
fn=process,
inputs=[
input_image_editor_component,
input_text_component,
inpaint_text_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component,
]
)
demo.launch(debug=True)