Spaces:
Runtime error
Runtime error
update
Browse files
README.md
CHANGED
@@ -1,46 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
license: mit
|
10 |
---
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
`title`: _string_
|
15 |
-
Display title for the Space
|
16 |
-
|
17 |
-
`emoji`: _string_
|
18 |
-
Space emoji (emoji-only character allowed)
|
19 |
-
|
20 |
-
`colorFrom`: _string_
|
21 |
-
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
22 |
-
|
23 |
-
`colorTo`: _string_
|
24 |
-
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
25 |
-
|
26 |
-
`sdk`: _string_
|
27 |
-
Can be either `gradio`, `streamlit`, or `static`
|
28 |
-
|
29 |
-
`sdk_version` : _string_
|
30 |
-
Only applicable for `streamlit` SDK.
|
31 |
-
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
32 |
-
|
33 |
-
`app_file`: _string_
|
34 |
-
Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code).
|
35 |
-
Path is relative to the root of the repository.
|
36 |
-
|
37 |
-
`models`: _List[string]_
|
38 |
-
HF model IDs (like "gpt2" or "deepset/roberta-base-squad2") used in the Space.
|
39 |
-
Will be parsed automatically from your code if not specified here.
|
40 |
-
|
41 |
-
`datasets`: _List[string]_
|
42 |
-
HF dataset IDs (like "common_voice" or "oscar-corpus/OSCAR-2109") used in the Space.
|
43 |
-
Will be parsed automatically from your code if not specified here.
|
44 |
-
|
45 |
-
`pinned`: _boolean_
|
46 |
-
Whether the Space stays on top of your list.
|
|
|
1 |
---
|
2 |
+
title: Uniformer_image_demo
|
3 |
+
emoji: 🏃
|
4 |
+
colorFrom: pink
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.3
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -90,15 +90,38 @@ def inference(video):
|
|
90 |
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
|
91 |
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
|
91 |
|
92 |
|
93 |
+
def set_example_video(example: list) -> dict:
|
94 |
+
return gr.Video.update(value=example[0])
|
95 |
+
|
96 |
+
|
97 |
+
demo = gr.Blocks()
|
98 |
+
with demo:
|
99 |
+
gr.Markdown(
|
100 |
+
"""
|
101 |
+
# UniFormer-S
|
102 |
+
Gradio demo for <a href='https://github.com/Sense-X/UniFormer' target='_blank'>UniFormer</a>: To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.
|
103 |
+
"""
|
104 |
+
)
|
105 |
+
|
106 |
+
with gr.Box():
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column():
|
109 |
+
with gr.Row():
|
110 |
+
input_video = gr.Video(label='Input Video')
|
111 |
+
with gr.Row():
|
112 |
+
submit_button = gr.Button('Submit')
|
113 |
+
with gr.Column():
|
114 |
+
label = gr.Label(num_top_classes=5)
|
115 |
+
with gr.Row():
|
116 |
+
example_videos = gr.Dataset(components=[input_video], samples=[['hitting_baseball.mp4'], ['hoverboarding.mp4'], ['yoga.mp4']])
|
117 |
+
|
118 |
+
gr.Markdown(
|
119 |
+
"""
|
120 |
+
<p style='text-align: center'><a href='https://arxiv.org/abs/2201.04676' target='_blank'>[ICLR2022] UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning</a> | <a href='https://github.com/Sense-X/UniFormer' target='_blank'>Github Repo</a></p>
|
121 |
+
"""
|
122 |
+
)
|
123 |
+
|
124 |
+
submit_button.click(fn=inference, inputs=input_video, outputs=label)
|
125 |
+
example_videos.click(fn=set_example_video, inputs=example_videos, outputs=example_videos.components)
|
126 |
+
|
127 |
+
demo.launch(enable_queue=True)
|