poor-mans-duplex / duplex.py
versae's picture
Update duplex.py
91c36f3
raw
history blame
8.74 kB
import os
import json
import random
import string
import numpy as np
import gradio as gr
import requests
import soundfile as sf
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
import sys
import gradio as gr
from transformers import pipeline, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
DEBUG = os.environ.get("DEBUG", "false")[0] in "ty1"
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 1024))
DEFAULT_LANG = os.environ.get("DEFAULT_LANG", "English")
HEADER = """
# Poor Man's Duplex
Talk to a language model like you talk on a Walkie-Talkie! Well, with larger latencies.
The models are [EleutherAI's GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B) for English, and [BERTIN GPT-J-6B](https://huggingface.co/bertin-project/bertin-gpt-j-6B) for Spanish.
""".strip()
FOOTER = """
<div align=center>
<img src="https://visitor-badge.glitch.me/badge?page_id=versae/poor-mans-duplex"/>
<div align=center>
""".strip()
asr_model_name_es = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish"
model_instance_es = AutoModelForCTC.from_pretrained(asr_model_name_es)
processor_es = Wav2Vec2ProcessorWithLM.from_pretrained(asr_model_name_es)
asr_es = pipeline(
"automatic-speech-recognition",
model=model_instance_es,
tokenizer=processor_es.tokenizer,
feature_extractor=processor_es.feature_extractor,
decoder=processor_es.decoder
)
tts_model_name = "facebook/tts_transformer-es-css10"
speak_es = gr.Interface.load(f"huggingface/{tts_model_name}")
transcribe_es = lambda input_file: asr_es(input_file, chunk_length_s=5, stride_length_s=1)["text"]
def generate_es(text, **kwargs):
# max_length=100, top_k=100, top_p=50, temperature=0.95, do_sample=True, do_clean=True
api_uri = "https://hf.space/embed/bertin-project/bertin-gpt-j-6B/+/api/predict/"
response = requests.post(api_uri, data=json.dumps({"data": [text, 100, 100, 50, 0.95, True, True]}))
if response.ok:
if DEBUG:
print(response.json())
return response.json()["data"][0]
else:
return ""
asr_model_name_en = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
model_instance_en = AutoModelForCTC.from_pretrained(asr_model_name_en)
processor_en = Wav2Vec2ProcessorWithLM.from_pretrained(asr_model_name_en)
asr_en = pipeline(
"automatic-speech-recognition",
model=model_instance_en,
tokenizer=processor_en.tokenizer,
feature_extractor=processor_en.feature_extractor,
decoder=processor_en.decoder
)
tts_model_name = "facebook/fastspeech2-en-ljspeech"
speak_en = gr.Interface.load(f"huggingface/{tts_model_name}")
transcribe_en = lambda input_file: asr_en(input_file, chunk_length_s=5, stride_length_s=1)["text"]
generate_iface = gr.Interface.load("huggingface/EleutherAI/gpt-j-6B")
empty_audio = 'empty.flac'
sf.write(empty_audio, [], 16000)
deuncase = gr.Interface.load("huggingface/pere/DeUnCaser")
def generate_en(text, **kwargs):
response = generate_iface(text)
if DEBUG:
print(response)
return response or ""
def select_lang(lang):
if lang.lower() == "spanish":
return generate_es, transcribe_es, speak_es
else:
return generate_en, transcribe_en, speak_en
def select_lang_vars(lang):
if lang.lower() == "spanish":
AGENT = "BERTIN"
USER = "ENTREVISTADOR"
CONTEXT = """La siguiente conversación es un extracto de una entrevista a {AGENT} celebrada en Madrid para Radio Televisión Española:
{USER}: Bienvenido, {AGENT}. Un placer tenerlo hoy con nosotros.
{AGENT}: Gracias. El placer es mío."""
else:
AGENT = "ELEUTHER"
USER = "INTERVIEWER"
CONTEXT = """The next conversation is an excerpt from an interview to {AGENT} that appeared in the New York Times:
{USER}: Welcome, {AGENT}. It is a pleasure to have you here today.
{AGENT}: Thanks. The pleasure is mine."""
return AGENT, USER, CONTEXT
def format_chat(history):
interventions = []
for user, bot in history:
interventions.append(f"""
<div data-testid="user" style="background-color:#16a34a" class="px-3 py-2 rounded-[22px] rounded-bl-none place-self-start text-white ml-7 text-sm">{user}</div>
<div data-testid="bot" style="background-color:gray" class="px-3 py-2 rounded-[22px] rounded-br-none text-white ml-7 text-sm">{bot}</div>
""")
return f"""<details><summary>Conversation log</summary>
<div class="overflow-y-auto h-[40vh]">
<div class="flex flex-col items-end space-y-4 p-3">
{"".join(interventions)}
</div>
</div>
</summary>"""
def chat_with_gpt(lang, agent, user, context, audio_in, history):
if not audio_in:
return history, history, empty_audio, format_chat(history)
generate, transcribe, speak = select_lang(lang)
AGENT, USER, _ = select_lang_vars(lang)
user_message = deuncase(transcribe(audio_in))
# agent = AGENT
# user = USER
generation_kwargs = {
"max_length": 25,
# "top_k": top_k,
# "top_p": top_p,
# "temperature": temperature,
# "do_sample": do_sample,
# "do_clean": do_clean,
# "num_return_sequences": 1,
# "return_full_text": False,
}
message = user_message.split(" ", 1)[0].capitalize() + " " + user_message.split(" ", 1)[-1]
history = history or [] #[(f"{user}: Bienvenido. Encantado de tenerle con nosotros.", f"{agent}: Un placer, muchas gracias por la invitación.")]
context = context.format(USER=user or USER, AGENT=agent or AGENT).strip()
if context[-1] not in ".:":
context += "."
context_length = len(context.split())
history_take = 0
history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
while len(history_context.split()) > MAX_LENGTH - (generation_kwargs["max_length"] + context_length):
history_take += 1
history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
if history_take >= MAX_LENGTH:
break
context += history_context
for _ in range(5):
response = generate(f"{context}\n\n{user}: {message}.\n", **generation_kwargs)
if DEBUG:
print("\n-----" + response + "-----\n")
response = response.split("\n")[-1]
if agent in response and response.split(agent)[-1]:
response = response.split(agent)[-1]
if user in response and response.split(user)[-1]:
response = response.split(user)[-1]
if response and response[0] in string.punctuation:
response = response[1:].strip()
if response.strip().startswith(f"{user}: {message}"):
response = response.strip().split(f"{user}: {message}")[-1]
if response.replace(".", "").strip() and message.replace(".", "").strip() != response.replace(".", "").strip():
break
if DEBUG:
print()
print("CONTEXT:")
print(context)
print()
print("MESSAGE")
print(message)
print()
print("RESPONSE:")
print(response)
if not response.strip():
response = "Lo siento, no puedo hablar ahora" if lang.lower() == "Spanish" else "Sorry, can't talk right now"
history.append((user_message, response))
return history, history, speak(response), format_chat(history)
with gr.Blocks() as demo:
gr.Markdown(HEADER)
lang = gr.Radio(label="Language", choices=["English", "Spanish"], value=DEFAULT_LANG, type="value")
AGENT, USER, CONTEXT = select_lang_vars(DEFAULT_LANG)
context = gr.Textbox(label="Context", lines=5, value=CONTEXT)
with gr.Row():
audio_in = gr.Audio(label="User", source="microphone", type="filepath")
audio_out = gr.Audio(label="Agent", interactive=False, value=empty_audio)
# chat_btn = gr.Button("Submit")
with gr.Row():
user = gr.Textbox(label="User", value=USER)
agent = gr.Textbox(label="Agent", value=AGENT)
lang.change(select_lang_vars, inputs=[lang], outputs=[agent, user, context])
history = gr.Variable(value=[])
chatbot = gr.Variable() # gr.Chatbot(color_map=("green", "gray"), visible=False)
# chat_btn.click(chat_with_gpt, inputs=[lang, agent, user, context, audio_in, history], outputs=[chatbot, history, audio_out])
log = gr.HTML()
audio_in.change(chat_with_gpt, inputs=[lang, agent, user, context, audio_in, history], outputs=[chatbot, history, audio_out, log])
gr.Markdown(FOOTER)
demo.launch()