Spaces:
Runtime error
Runtime error
File size: 2,497 Bytes
052c05b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
"""
Train a super-resolution model.
"""
import argparse
import torch.nn.functional as F
from pixel_guide_diffusion import dist_util, logger
from pixel_guide_diffusion.image_datasets import load_data
from pixel_guide_diffusion.resample import create_named_schedule_sampler
from pixel_guide_diffusion.script_util import (
pg_model_and_diffusion_defaults,
pg_create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from pixel_guide_diffusion.train_util import TrainLoop
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure()
logger.log("creating model...")
model, diffusion = pg_create_model_and_diffusion(
**args_to_dict(args, pg_model_and_diffusion_defaults().keys())
)
model.to(dist_util.dev())
schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
logger.log("creating data loader...")
data = load_data(
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
class_cond=args.class_cond,
guide_dir=args.guide_dir,
guide_size=args.guide_size,
deterministic=True,
)
logger.log("training...")
TrainLoop(
model=model,
diffusion=diffusion,
data=data,
batch_size=args.batch_size,
microbatch=args.microbatch,
lr=args.lr,
ema_rate=args.ema_rate,
log_interval=args.log_interval,
save_interval=args.save_interval,
resume_checkpoint=args.resume_checkpoint,
use_fp16=args.use_fp16,
fp16_scale_growth=args.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=args.weight_decay,
lr_anneal_steps=args.lr_anneal_steps,
).run_loop()
def create_argparser():
defaults = dict(
data_dir="",
guide_dir="",
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
microbatch=-1,
ema_rate="0.9999",
log_interval=10,
save_interval=10000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
)
defaults.update(pg_model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()
|