File size: 15,169 Bytes
bfa0d3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#@title Define Generator and Discriminator model
import numpy as np
import torch
from torch import nn
from torch.nn import Parameter
from torch.nn import functional as F


def l2_normalize(v, dim=None, eps=1e-12):
    return v / (v.norm(dim=dim, keepdim=True) + eps)
    
 
def unpool(value):
    """Unpooling operation.
    N-dimensional version of the unpooling operation from
    https://www.robots.ox.ac.uk/~vgg/rg/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf
    Taken from: https://github.com/tensorflow/tensorflow/issues/2169
    Args:
        value: a Tensor of shape [b, d0, d1, ..., dn, ch]
        name: name of the op
    Returns:
        A Tensor of shape [b, 2*d0, 2*d1, ..., 2*dn, ch]
    """
    value = torch.Tensor.permute(value, [0,2,3,1])
    sh = list(value.shape)
    dim = len(sh[1:-1])
    out = (torch.reshape(value, [-1] + sh[-dim:]))
    for i in range(dim, 0, -1):
        out = torch.cat([out, torch.zeros_like(out)], i)
    out_size = [-1] + [s * 2 for s in sh[1:-1]] + [sh[-1]]
    out = torch.reshape(out, out_size)
    out = torch.Tensor.permute(out, [0,3,1,2])
    return out
 
 
class BatchNorm2d(nn.BatchNorm2d):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.initialized = False
        self.accumulating = False
        self.accumulated_mean = Parameter(torch.zeros(args[0]), requires_grad=False)
        self.accumulated_var = Parameter(torch.zeros(args[0]), requires_grad=False)
        self.accumulated_counter = Parameter(torch.zeros(1)+1e-12, requires_grad=False)
 
    def forward(self, inputs, *args, **kwargs):
        if not self.initialized:
            self.check_accumulation()
            self.set_initialized(True)
        if self.accumulating:
            self.eval()
            with torch.no_grad():
                axes = [0] + ([] if len(inputs.shape) == 2 else list(range(2,len(inputs.shape))))
                _mean = torch.mean(inputs, axes, keepdim=True)
                mean = torch.mean(inputs, axes, keepdim=False)
                var = torch.mean((inputs-_mean)**2, axes)
                self.accumulated_mean.copy_(self.accumulated_mean + mean)
                self.accumulated_var.copy_(self.accumulated_var + var)
                self.accumulated_counter.copy_(self.accumulated_counter + 1)
                _mean = self.running_mean*1.0
                _variance = self.running_var*1.0
                self._mean.copy_(self.accumulated_mean / self.accumulated_counter)
                self._variance.copy_(self.accumulated_var / self.accumulated_counter)
                out = super().forward(inputs, *args, **kwargs)
                self.running_mean.copy_(_mean)
                self.running_var.copy_(_variance)
                return out
        out = super().forward(inputs, *args, **kwargs)
        return out
 
    def check_accumulation(self):
        if self.accumulated_counter.detach().cpu().numpy().mean() > 1-1e-12:
            self.running_mean.copy_(self.accumulated_mean / self.accumulated_counter)
            self.running_var.copy_(self.accumulated_var / self.accumulated_counter)
            return True
        return False
 
    def clear_accumulated(self):
        self.accumulated_mean.copy_(self.accumulated_mean*0.0)
        self.accumulated_var.copy_(self.accumulated_var*0.0)
        self.accumulated_counter.copy_(self.accumulated_counter*0.0+1e-2)
 
    def set_accumulating(self, status=True):
        if status:
            self.accumulating = True
        else:
            self.accumulating = False
 
    def set_initialized(self, status=False):
        if not status:
            self.initialized = False
        else:
            self.initialized = True
 

class SpectralNorm(nn.Module):
    def __init__(self, module, name='weight', power_iterations=2):
        super().__init__()
        self.module = module
        self.name = name
        self.power_iterations = power_iterations
        if not self._made_params():
            self._make_params()
 
    def _update_u(self):
        w = self.weight
        u = self.weight_u
 
        if len(w.shape) == 4:
            _w = torch.Tensor.permute(w, [2,3,1,0])
            _w = torch.reshape(_w, [-1, _w.shape[-1]])
        elif isinstance(self.module, nn.Linear) or isinstance(self.module, nn.Embedding):
            _w = torch.Tensor.permute(w, [1,0])
            _w = torch.reshape(_w, [-1, _w.shape[-1]])
        else:
            _w = torch.reshape(w, [-1, w.shape[-1]])
            _w = torch.reshape(_w, [-1, _w.shape[-1]])
        singular_value = "left" if _w.shape[0] <= _w.shape[1] else "right"
        norm_dim = 0 if _w.shape[0] <= _w.shape[1] else 1
        for _ in range(self.power_iterations):
            if singular_value == "left":
                v = l2_normalize(torch.matmul(_w.t(), u), dim=norm_dim)
                u = l2_normalize(torch.matmul(_w, v), dim=norm_dim)
            else:
                v = l2_normalize(torch.matmul(u, _w.t()), dim=norm_dim)
                u = l2_normalize(torch.matmul(v, _w), dim=norm_dim)
 
        if singular_value == "left":
            sigma = torch.matmul(torch.matmul(u.t(), _w), v)
        else:
            sigma = torch.matmul(torch.matmul(v, _w), u.t())
        _w = w / sigma.detach()
        setattr(self.module, self.name, _w)
        self.weight_u.copy_(u.detach())
 
    def _made_params(self):
        try:
            self.weight
            self.weight_u
            return True
        except AttributeError:
            return False
 
    def _make_params(self):
        w = getattr(self.module, self.name)
 
        if len(w.shape) == 4:
            _w = torch.Tensor.permute(w, [2,3,1,0])
            _w = torch.reshape(_w, [-1, _w.shape[-1]])
        elif isinstance(self.module, nn.Linear) or isinstance(self.module, nn.Embedding):
            _w = torch.Tensor.permute(w, [1,0])
            _w = torch.reshape(_w, [-1, _w.shape[-1]])
        else:
            _w = torch.reshape(w, [-1, w.shape[-1]])
        singular_value = "left" if _w.shape[0] <= _w.shape[1] else "right"
        norm_dim = 0 if _w.shape[0] <= _w.shape[1] else 1
        u_shape = (_w.shape[0], 1) if singular_value == "left" else (1, _w.shape[-1])
        
        u = Parameter(w.data.new(*u_shape).normal_(0, 1), requires_grad=False)
        u.copy_(l2_normalize(u, dim=norm_dim).detach())
 
        del self.module._parameters[self.name]
        self.weight = w
        self.weight_u = u
 
    def forward(self, *args, **kwargs):
        self._update_u()
        return self.module.forward(*args, **kwargs)
    
    
class SelfAttention(nn.Module):
    def __init__(self, in_dim, activation=torch.relu):
        super().__init__()
        self.chanel_in = in_dim
        self.activation = activation
    
        self.theta = SpectralNorm(nn.Conv2d(in_dim, in_dim // 8, 1, bias=False))
        self.phi = SpectralNorm(nn.Conv2d(in_dim, in_dim // 8, 1, bias=False))
        self.pool = nn.MaxPool2d(2, 2)
        self.g = SpectralNorm(nn.Conv2d(in_dim, in_dim // 2, 1, bias=False))
        self.o_conv = SpectralNorm(nn.Conv2d(in_dim // 2, in_dim, 1, bias=False))
        self.gamma = Parameter(torch.zeros(1))
    
    def forward(self, x):
        m_batchsize, C, width, height = x.shape
        N = height * width
    
        theta = self.theta(x)
        phi = self.phi(x)
        phi = self.pool(phi)
        phi = torch.reshape(phi,(m_batchsize, -1, N // 4))
        theta = torch.reshape(theta,(m_batchsize, -1, N))
        theta = torch.Tensor.permute(theta,(0, 2, 1))
        attention = torch.softmax(torch.bmm(theta, phi), -1)
        g = self.g(x)
        g = torch.reshape(self.pool(g),(m_batchsize, -1, N // 4))
        attn_g = torch.reshape(torch.bmm(g, torch.Tensor.permute(attention,(0, 2, 1))),(m_batchsize, -1, width, height))
        out = self.o_conv(attn_g)
        return self.gamma * out + x
 
 
class ConditionalBatchNorm2d(nn.Module):
    def __init__(self, num_features, num_classes, eps=1e-5, momentum=0.1):
        super().__init__()
        self.bn_in_cond = BatchNorm2d(num_features, affine=False, eps=eps, momentum=momentum)
        self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False))
        self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features, bias=False))
    
    def forward(self, x, y):
        out = self.bn_in_cond(x)

        if isinstance(y, list):
            gamma, beta = y
            out = torch.reshape(gamma, (gamma.shape[0], -1, 1, 1)) * out + torch.reshape(beta, (beta.shape[0], -1, 1, 1))
            return out

        gamma = self.gamma_embed(y)
        # gamma = gamma + 1
        beta = self.beta_embed(y)
        out = torch.reshape(gamma, (gamma.shape[0], -1, 1, 1)) * out + torch.reshape(beta, (beta.shape[0], -1, 1, 1))
        return out
 

class ResBlock(nn.Module):
    def __init__(
        self,
        in_channel,
        out_channel,
        kernel_size=[3, 3],
        padding=1,
        stride=1,
        n_class=None,
        conditional=True,
        activation=torch.relu,
        upsample=True,
        downsample=False,
        z_dim=128,
        use_attention=False,
        skip_proj=None
    ):
        super().__init__()
    
        if conditional:
            self.cond_norm1 = ConditionalBatchNorm2d(in_channel, z_dim)
    
        self.conv0 = SpectralNorm(
            nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding)
        )
    
        if conditional:
            self.cond_norm2 = ConditionalBatchNorm2d(out_channel, z_dim)
    
        self.conv1 = SpectralNorm(
            nn.Conv2d(out_channel, out_channel, kernel_size, stride, padding)
        )
    
        self.skip_proj = False
        if skip_proj is not True and (upsample or downsample):
            self.conv_sc = SpectralNorm(nn.Conv2d(in_channel, out_channel, 1, 1, 0))
            self.skip_proj = True
    
        if use_attention:
            self.attention = SelfAttention(out_channel)
    
        self.upsample = upsample
        self.downsample = downsample
        self.activation = activation
        self.conditional = conditional
        self.use_attention = use_attention
    
    def forward(self, input, condition=None):
        out = input
    
        if self.conditional:
            out = self.cond_norm1(out, condition if not isinstance(condition, list) else condition[0])
        out = self.activation(out)
        if self.upsample:
            out = unpool(out) # out = F.interpolate(out, scale_factor=2)
        out = self.conv0(out)
        if self.conditional:
            out = self.cond_norm2(out, condition if not isinstance(condition, list) else condition[1])
        out = self.activation(out)
        out = self.conv1(out)
        
        if self.downsample:
            out = F.avg_pool2d(out, 2, 2)
    
        if self.skip_proj:
            skip = input
            if self.upsample:
                skip = unpool(skip) # skip = F.interpolate(skip, scale_factor=2)
            skip = self.conv_sc(skip)
            if self.downsample:
                skip = F.avg_pool2d(skip, 2, 2)
            out = out + skip
        else:
            skip = input
    
        if self.use_attention:
            out = self.attention(out)
    
        return out
 
 
class Generator(nn.Module):
    def __init__(self, code_dim=128, n_class=1000, chn=96, blocks_with_attention="B4", resolution=512):
        super().__init__()
    
        def GBlock(in_channel, out_channel, n_class, z_dim, use_attention):
            return ResBlock(in_channel, out_channel, n_class=n_class, z_dim=z_dim, use_attention=use_attention)
    
        self.embed_y = nn.Linear(n_class, 128, bias=False)
    
        self.chn = chn
        self.resolution = resolution 
        self.blocks_with_attention = set(blocks_with_attention.split(",")) 
        self.blocks_with_attention.discard('')
    
        gblock = []
        in_channels, out_channels = self.get_in_out_channels()
        self.num_split = len(in_channels) + 1
    
        z_dim = code_dim//self.num_split + 128
        self.noise_fc = SpectralNorm(nn.Linear(code_dim//self.num_split, 4 * 4 * in_channels[0]))
    
        self.sa_ids = [int(s.split('B')[-1]) for s in self.blocks_with_attention]
    
        for i, (nc_in, nc_out) in enumerate(zip(in_channels, out_channels)):
            gblock.append(GBlock(nc_in, nc_out, n_class=n_class, z_dim=z_dim, use_attention=(i+1) in self.sa_ids))
        self.blocks = nn.ModuleList(gblock)
    
        self.output_layer_bn = BatchNorm2d(1 * chn, eps=1e-5)
        self.output_layer_conv = SpectralNorm(nn.Conv2d(1 * chn, 3, [3, 3], padding=1))

        self.z_dim = code_dim
        self.c_dim = n_class
        self.n_level = self.num_split
 
    def get_in_out_channels(self):
        resolution = self.resolution
        if resolution == 1024:
            channel_multipliers = [16, 16, 8, 8, 4, 2, 1, 1, 1]
        elif resolution == 512:
            channel_multipliers = [16, 16, 8, 8, 4, 2, 1, 1]
        elif resolution == 256:
            channel_multipliers = [16, 16, 8, 8, 4, 2, 1]
        elif resolution == 128:
            channel_multipliers = [16, 16, 8, 4, 2, 1]
        elif resolution == 64:
            channel_multipliers = [16, 16, 8, 4, 2]
        elif resolution == 32:
            channel_multipliers = [4, 4, 4, 4]
        else:
            raise ValueError("Unsupported resolution: {}".format(resolution))
        in_channels = [self.chn * c for c in channel_multipliers[:-1]]
        out_channels = [self.chn * c for c in channel_multipliers[1:]]
        return in_channels, out_channels
 
    def forward(self, input, class_id):
        codes = torch.chunk(input, self.num_split, 1)
        class_emb = self.embed_y(class_id)  # 128
        out = self.noise_fc(codes[0])
        out = torch.Tensor.permute(torch.reshape(out,(out.shape[0], 4, 4, -1)),(0, 3, 1, 2))
        for i, (code, gblock) in enumerate(zip(codes[1:], self.blocks)):
            condition = torch.cat([code, class_emb], 1)
            out = gblock(out, condition)
    
        out = self.output_layer_bn(out)
        out = torch.relu(out)
        out = self.output_layer_conv(out)
        
        return (torch.tanh(out) + 1) / 2

    def forward_w(self, ws):
        out = self.noise_fc(ws[0])
        out = torch.Tensor.permute(torch.reshape(out,(out.shape[0], 4, 4, -1)),(0, 3, 1, 2))
        for i, (w, gblock) in enumerate(zip(ws[1:], self.blocks)):
            out = gblock(out, w)
    
        out = self.output_layer_bn(out)
        out = torch.relu(out)
        out = self.output_layer_conv(out)
        
        return (torch.tanh(out) + 1) / 2

    def forward_wp(self, z0, gammas, betas):
        out = self.noise_fc(z0)
        out = torch.Tensor.permute(torch.reshape(out,(out.shape[0], 4, 4, -1)),(0, 3, 1, 2))
        for i, (gamma, beta, gblock) in enumerate(zip(gammas, betas, self.blocks)):
            out = gblock(out, [[gamma[0], beta[0]], [gamma[1], beta[1]]])
    
        out = self.output_layer_bn(out)
        out = torch.relu(out)
        out = self.output_layer_conv(out)
        
        return (torch.tanh(out) + 1) / 2