Spaces:
Runtime error
Runtime error
from i18n.i18n import I18nAuto | |
from configs.config import Config | |
from sklearn.cluster import MiniBatchKMeans | |
import torch, platform | |
import numpy as np | |
import gradio as gr | |
import faiss | |
import fairseq | |
import pathlib | |
import json | |
from time import sleep | |
from subprocess import Popen | |
from random import shuffle | |
import warnings | |
import traceback | |
import threading | |
import shutil | |
import logging | |
import sys | |
from dotenv import load_dotenv | |
from infer.modules.vc.modules import VC | |
import shutil, glob | |
from easyfuncs import download_from_url, CachedModels | |
os.makedirs("dataset",exist_ok=True) | |
model_library = CachedModels() | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("httpx").setLevel(logging.WARNING) | |
logger = logging.getLogger(__name__) | |
tmp = os.path.join(now_dir, "TEMP") | |
shutil.rmtree(tmp, ignore_errors=True) | |
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) | |
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) | |
os.makedirs(tmp, exist_ok=True) | |
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) | |
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) | |
os.environ["TEMP"] = tmp | |
warnings.filterwarnings("ignore") | |
torch.manual_seed(114514) | |
config = Config() | |
vc = VC(config) | |
class ToolButton(gr.Button, gr.components.FormComponent): | |
"""Small button with single emoji as text, fits inside gradio forms""" | |
def __init__(self, **kwargs): | |
super().__init__(variant="tool", **kwargs) | |
def get_block_name(self): | |
return "button" | |
weight_root = os.getenv("weight_root") | |
index_root = os.getenv("index_root") | |
outside_index_root = os.getenv("outside_index_root") | |
names = [] | |
for name in os.listdir(weight_root): | |
if name.endswith(".pth"): | |
names.append(name) | |
index_paths = [] | |
def lookup_indices(index_root): | |
global index_paths | |
for root, dirs, files in os.walk(index_root, topdown=False): | |
for name in files: | |
if name.endswith(".index") and "trained" not in name: | |
index_paths.append("%s/%s" % (root, name)) | |
lookup_indices(index_root) | |
lookup_indices(outside_index_root) | |
uvr5_names = [] | |
for name in os.listdir(weight_uvr5_root): | |
if name.endswith(".pth") or "onnx" in name: | |
uvr5_names.append(name.replace(".pth", "")) | |
def change_choices(): | |
names = [] | |
for name in os.listdir(weight_root): | |
if name.endswith(".pth"): | |
names.append(name) | |
index_paths = [] | |
for root, dirs, files in os.walk(index_root, topdown=False): | |
for name in files: | |
if name.endswith(".index") and "trained" not in name: | |
index_paths.append("%s/%s" % (root, name)) | |
return {"choices": sorted(names), "__type__": "update"}, { | |
"choices": sorted(index_paths), | |
"__type__": "update", | |
} | |
def clean(): | |
return {"value": "", "__type__": "update"} | |
def if_done(done, p): | |
while 1: | |
if p.poll() is None: | |
sleep(0.5) | |
else: | |
break | |
done[0] = True | |
def if_done_multi(done, ps): | |
while 1: | |
# poll==None代表进程未结束 | |
# 只要有一个进程未结束都不停 | |
flag = 1 | |
for p in ps: | |
if p.poll() is None: | |
flag = 0 | |
sleep(0.5) | |
break | |
if flag == 1: | |
break | |
done[0] = True | |
with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app: | |
with gr.Row(): | |
gr.Markdown("<center><h1> RVC V2 - EASY GUI") | |
with gr.Tabs(): | |
with gr.TabItem("Inference"): | |
with gr.Row(): | |
voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True) | |
refresh_button = gr.Button("Refresh", variant="primary") | |
spk_item = gr.Slider( | |
minimum=0, | |
maximum=2333, | |
step=1, | |
label="Speaker ID", | |
value=0, | |
visible=False, | |
interactive=True, | |
) | |
vc_transform0 = gr.Number( | |
label="Pitch", | |
value=0 | |
) | |
but0 = gr.Button(value="Convert", variant="primary") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
dropbox = gr.File(label="Drop your audio here & hit the Reload button.") | |
with gr.Row(): | |
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath") | |
with gr.Row(): | |
paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')] | |
input_audio0 = gr.Dropdown( | |
label="Input Path", | |
value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '', | |
choices=paths_for_files('audios'), # Only show absolute paths for audio files ending in .mp3, .wav, .flac or .ogg | |
allow_custom_value=True | |
) | |
with gr.Row(): | |
audio_player = gr.Audio() | |
input_audio0.change( | |
inputs=[input_audio0], | |
outputs=[audio_player], | |
fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None | |
) | |
record_button.stop_recording( | |
fn=lambda audio:audio, #TODO save wav lambda | |
inputs=[record_button], | |
outputs=[input_audio0]) | |
dropbox.upload( | |
fn=lambda audio:audio.name, | |
inputs=[dropbox], | |
outputs=[input_audio0]) | |
with gr.Column(): | |
with gr.Accordion("Change Index", open=False): | |
file_index2 = gr.Dropdown( | |
label="Change Index", | |
choices=sorted(index_paths), | |
interactive=True, | |
value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else '' | |
) | |
index_rate1 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label="Index Strength", | |
value=0.5, | |
interactive=True, | |
) | |
vc_output2 = gr.Audio(label="Output") | |
with gr.Accordion("General Settings", open=False): | |
f0method0 = gr.Radio( | |
label="Method", | |
choices=["pm", "harvest", "crepe", "rmvpe"] | |
if config.dml == False | |
else ["pm", "harvest", "rmvpe"], | |
value="rmvpe", | |
interactive=True, | |
) | |
filter_radius0 = gr.Slider( | |
minimum=0, | |
maximum=7, | |
label="Breathiness Reduction (Harvest only)", | |
value=3, | |
step=1, | |
interactive=True, | |
) | |
resample_sr0 = gr.Slider( | |
minimum=0, | |
maximum=48000, | |
label="Resample", | |
value=0, | |
step=1, | |
interactive=True, | |
visible=False | |
) | |
rms_mix_rate0 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label="Volume Normalization", | |
value=0, | |
interactive=True, | |
) | |
protect0 = gr.Slider( | |
minimum=0, | |
maximum=0.5, | |
label="Breathiness Protection (0 is enabled, 0.5 is disabled)", | |
value=0.33, | |
step=0.01, | |
interactive=True, | |
) | |
if voice_model != None: vc.get_vc(voice_model.value,protect0,protect0) | |
file_index1 = gr.Textbox( | |
label="Index Path", | |
interactive=True, | |
visible=False#Not used here | |
) | |
refresh_button.click( | |
fn=change_choices, | |
inputs=[], | |
outputs=[voice_model, file_index2], | |
api_name="infer_refresh", | |
) | |
refresh_button.click( | |
fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac' | |
inputs=[], | |
outputs = [input_audio0], | |
) | |
refresh_button.click( | |
fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac' | |
inputs=[], | |
outputs = [input_audio0], | |
) | |
with gr.Row(): | |
f0_file = gr.File(label="F0 Path", visible=False) | |
with gr.Row(): | |
vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False) | |
but0.click( | |
vc.vc_single, | |
[ | |
spk_item, | |
input_audio0, | |
vc_transform0, | |
f0_file, | |
f0method0, | |
file_index1, | |
file_index2, | |
index_rate1, | |
filter_radius0, | |
resample_sr0, | |
rms_mix_rate0, | |
protect0, | |
], | |
[vc_output1, vc_output2], | |
api_name="infer_convert", | |
) | |
voice_model.change( | |
fn=vc.get_vc, | |
inputs=[voice_model, protect0, protect0], | |
outputs=[spk_item, protect0, protect0, file_index2, file_index2], | |
api_name="infer_change_voice", | |
) | |
with gr.TabItem("Download Models"): | |
with gr.Row(): | |
url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6) | |
name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2) | |
url_download = gr.Button(value="Download Model",scale=2) | |
url_download.click( | |
inputs=[url_input,name_output], | |
outputs=[url_input], | |
fn=download_from_url, | |
) | |
with gr.Row(): | |
model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5) | |
download_from_browser = gr.Button(value="Get",scale=2) | |
download_from_browser.click( | |
inputs=[model_browser], | |
outputs=[model_browser], | |
fn=lambda model: download_from_url(model_library.models[model],model), | |
) | |
if config.iscolab: | |
app.queue(concurrency_count=511, max_size=1022).launch(share=True) | |
else: | |
app.queue(concurrency_count=511, max_size=1022).launch( | |
server_name="0.0.0.0", | |
inbrowser=not config.noautoopen, | |
server_port=config.listen_port, | |
quiet=True, | |
) |