Spaces:
Sleeping
Sleeping
import math | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import cv2 | |
from tensorflow.keras import preprocessing | |
def euclidean_distance(point1, point2): | |
return math.sqrt((point2[0] - point1[0]) ** 2 + (point2[1] - point1[1]) ** 2) | |
def convert_to_real_measurements(pixel_measurement, pixel_height, real_height_cm): | |
height_ratio = real_height_cm / pixel_height | |
return pixel_measurement * height_ratio | |
def measure_body_sizes(side_colored_mask, front_colored_mask, sideposes, frontposes, real_height_cm, rainbow): | |
"""Measure various body sizes based on detected poses.""" | |
measurements = [] | |
for pose in frontposes: | |
# Assuming each `pose` is a dictionary with 'keypoints' that are already in the required format | |
keypoints = pose[0] # This should directly give us the dictionary | |
# Extract positions directly from keypoints | |
left_eye = keypoints[1].position | |
right_eye = keypoints[2].position | |
nose = keypoints[3].position | |
right_ear = keypoints[4].position | |
left_shoulder = keypoints[5].position | |
right_shoulder = keypoints[6].position | |
left_elbow = keypoints[7].position | |
right_elbow = keypoints[8].position | |
left_wrist = keypoints[9].position | |
right_wrist = keypoints[10].position | |
left_hip = keypoints[11].position | |
right_hip = keypoints[12].position | |
left_knee = keypoints[13].position | |
right_knee = keypoints[14].position | |
left_ankle = keypoints[15].position | |
right_ankle = keypoints[16].position | |
# Calculate pixel height (from the top of the head to the bottom of the ankle) | |
pixel_height = euclidean_distance((left_eye.x, left_eye.y), (left_ankle.x, left_ankle.y)) | |
shoulder_width_cm = convert_to_real_measurements( | |
euclidean_distance((left_shoulder.x, left_shoulder.y),(right_shoulder.x, right_shoulder.y)), | |
pixel_height, real_height_cm | |
) | |
# arm_length_cm = convert_to_real_measurements( | |
# euclidean_distance((right_shoulder.x, right_shoulder.y), (right_elbow.x, right_elbow.y)), | |
# pixel_height, real_height_cm | |
# ) + convert_to_real_measurements( | |
# euclidean_distance((right_elbow.x, right_elbow.y), (right_wrist.x, right_wrist.y)), | |
# pixel_height, real_height_cm | |
# ) | |
# leg_length_cm = convert_to_real_measurements( | |
# euclidean_distance((left_hip.x, left_hip.y), (left_knee.x, left_knee.y)), | |
# pixel_height, real_height_cm | |
# ) + convert_to_real_measurements( | |
# euclidean_distance((left_knee.x, left_knee.y), (left_ankle.x, left_ankle.y)), | |
# pixel_height, real_height_cm | |
# ) | |
arm_length_cm = convert_to_real_measurements( | |
euclidean_distance((left_shoulder.x, left_shoulder.y), (left_wrist.x, left_wrist.y)), | |
pixel_height, real_height_cm | |
) | |
leg_length_cm = convert_to_real_measurements( | |
euclidean_distance((left_hip.x, left_hip.y), (left_ankle.x, right_ankle.y)), | |
pixel_height, real_height_cm | |
) | |
shoulder_to_waist_cm = convert_to_real_measurements( | |
euclidean_distance((left_shoulder.x, left_shoulder.y), (left_hip.x, left_hip.y)), | |
pixel_height, real_height_cm | |
) | |
# Calculate waist circumference using the ellipse circumference formula | |
a = euclidean_distance((left_hip.x, left_hip.y), (right_hip.x, right_hip.y)) / 2 | |
# b = euclidean_distance((), ()) / 2 | |
# Use Ramanujan's approximation for the circumference of an ellipse | |
# waist_circumference_px = math.pi * (3*(a + b) - math.sqrt((3*a + b)*(a + 3*b))) | |
waist_circumference_cm = 90 #convert_to_real_measurements(waist_circumference_px, pixel_height, real_height_cm) | |
# Convert pixel measurements to real measurements using the height ratio | |
measurements.append({ | |
"shoulder_width_cm": shoulder_width_cm, | |
"leg_length_cm": leg_length_cm, | |
"arm_length_cm": arm_length_cm, | |
"shoulder_to_waist_cm": shoulder_to_waist_cm, | |
"height_cm": real_height_cm, | |
"waist_circumference_cm": waist_circumference_cm | |
}) | |
return measurements | |