deprem-ocr-2 / ocr /ppocr /data /lmdb_dataset.py
Goodsea's picture
paddleocr
5b765fe
import os
import cv2
import lmdb
import numpy as np
from paddle.io import Dataset
from .imaug import create_operators, transform
class LMDBDataSet(Dataset):
def __init__(self, config, mode, logger, seed=None):
super(LMDBDataSet, self).__init__()
global_config = config["Global"]
dataset_config = config[mode]["dataset"]
loader_config = config[mode]["loader"]
batch_size = loader_config["batch_size_per_card"]
data_dir = dataset_config["data_dir"]
self.do_shuffle = loader_config["shuffle"]
self.lmdb_sets = self.load_hierarchical_lmdb_dataset(data_dir)
logger.info("Initialize indexs of datasets:%s" % data_dir)
self.data_idx_order_list = self.dataset_traversal()
if self.do_shuffle:
np.random.shuffle(self.data_idx_order_list)
self.ops = create_operators(dataset_config["transforms"], global_config)
self.ext_op_transform_idx = dataset_config.get("ext_op_transform_idx", 2)
ratio_list = dataset_config.get("ratio_list", [1.0])
self.need_reset = True in [x < 1 for x in ratio_list]
def load_hierarchical_lmdb_dataset(self, data_dir):
lmdb_sets = {}
dataset_idx = 0
for dirpath, dirnames, filenames in os.walk(data_dir + "/"):
if not dirnames:
env = lmdb.open(
dirpath,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
txn = env.begin(write=False)
num_samples = int(txn.get("num-samples".encode()))
lmdb_sets[dataset_idx] = {
"dirpath": dirpath,
"env": env,
"txn": txn,
"num_samples": num_samples,
}
dataset_idx += 1
return lmdb_sets
def dataset_traversal(self):
lmdb_num = len(self.lmdb_sets)
total_sample_num = 0
for lno in range(lmdb_num):
total_sample_num += self.lmdb_sets[lno]["num_samples"]
data_idx_order_list = np.zeros((total_sample_num, 2))
beg_idx = 0
for lno in range(lmdb_num):
tmp_sample_num = self.lmdb_sets[lno]["num_samples"]
end_idx = beg_idx + tmp_sample_num
data_idx_order_list[beg_idx:end_idx, 0] = lno
data_idx_order_list[beg_idx:end_idx, 1] = list(range(tmp_sample_num))
data_idx_order_list[beg_idx:end_idx, 1] += 1
beg_idx = beg_idx + tmp_sample_num
return data_idx_order_list
def get_img_data(self, value):
"""get_img_data"""
if not value:
return None
imgdata = np.frombuffer(value, dtype="uint8")
if imgdata is None:
return None
imgori = cv2.imdecode(imgdata, 1)
if imgori is None:
return None
return imgori
def get_ext_data(self):
ext_data_num = 0
for op in self.ops:
if hasattr(op, "ext_data_num"):
ext_data_num = getattr(op, "ext_data_num")
break
load_data_ops = self.ops[: self.ext_op_transform_idx]
ext_data = []
while len(ext_data) < ext_data_num:
lmdb_idx, file_idx = self.data_idx_order_list[
np.random.randint(self.__len__())
]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
sample_info = self.get_lmdb_sample_info(
self.lmdb_sets[lmdb_idx]["txn"], file_idx
)
if sample_info is None:
continue
img, label = sample_info
data = {"image": img, "label": label}
outs = transform(data, load_data_ops)
ext_data.append(data)
return ext_data
def get_lmdb_sample_info(self, txn, index):
label_key = "label-%09d".encode() % index
label = txn.get(label_key)
if label is None:
return None
label = label.decode("utf-8")
img_key = "image-%09d".encode() % index
imgbuf = txn.get(img_key)
return imgbuf, label
def __getitem__(self, idx):
lmdb_idx, file_idx = self.data_idx_order_list[idx]
lmdb_idx = int(lmdb_idx)
file_idx = int(file_idx)
sample_info = self.get_lmdb_sample_info(
self.lmdb_sets[lmdb_idx]["txn"], file_idx
)
if sample_info is None:
return self.__getitem__(np.random.randint(self.__len__()))
img, label = sample_info
data = {"image": img, "label": label}
data["ext_data"] = self.get_ext_data()
outs = transform(data, self.ops)
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
return self.data_idx_order_list.shape[0]