Spaces:
Runtime error
Runtime error
import math | |
import random | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from .text_image_aug import tia_distort, tia_perspective, tia_stretch | |
class RecAug(object): | |
def __init__(self, use_tia=True, aug_prob=0.4, **kwargs): | |
self.use_tia = use_tia | |
self.aug_prob = aug_prob | |
def __call__(self, data): | |
img = data["image"] | |
img = warp(img, 10, self.use_tia, self.aug_prob) | |
data["image"] = img | |
return data | |
class RecConAug(object): | |
def __init__( | |
self, | |
prob=0.5, | |
image_shape=(32, 320, 3), | |
max_text_length=25, | |
ext_data_num=1, | |
**kwargs | |
): | |
self.ext_data_num = ext_data_num | |
self.prob = prob | |
self.max_text_length = max_text_length | |
self.image_shape = image_shape | |
self.max_wh_ratio = self.image_shape[1] / self.image_shape[0] | |
def merge_ext_data(self, data, ext_data): | |
ori_w = round( | |
data["image"].shape[1] / data["image"].shape[0] * self.image_shape[0] | |
) | |
ext_w = round( | |
ext_data["image"].shape[1] | |
/ ext_data["image"].shape[0] | |
* self.image_shape[0] | |
) | |
data["image"] = cv2.resize(data["image"], (ori_w, self.image_shape[0])) | |
ext_data["image"] = cv2.resize(ext_data["image"], (ext_w, self.image_shape[0])) | |
data["image"] = np.concatenate([data["image"], ext_data["image"]], axis=1) | |
data["label"] += ext_data["label"] | |
return data | |
def __call__(self, data): | |
rnd_num = random.random() | |
if rnd_num > self.prob: | |
return data | |
for idx, ext_data in enumerate(data["ext_data"]): | |
if len(data["label"]) + len(ext_data["label"]) > self.max_text_length: | |
break | |
concat_ratio = ( | |
data["image"].shape[1] / data["image"].shape[0] | |
+ ext_data["image"].shape[1] / ext_data["image"].shape[0] | |
) | |
if concat_ratio > self.max_wh_ratio: | |
break | |
data = self.merge_ext_data(data, ext_data) | |
data.pop("ext_data") | |
return data | |
class ClsResizeImg(object): | |
def __init__(self, image_shape, **kwargs): | |
self.image_shape = image_shape | |
def __call__(self, data): | |
img = data["image"] | |
norm_img, _ = resize_norm_img(img, self.image_shape) | |
data["image"] = norm_img | |
return data | |
class NRTRRecResizeImg(object): | |
def __init__(self, image_shape, resize_type, padding=False, **kwargs): | |
self.image_shape = image_shape | |
self.resize_type = resize_type | |
self.padding = padding | |
def __call__(self, data): | |
img = data["image"] | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
image_shape = self.image_shape | |
if self.padding: | |
imgC, imgH, imgW = image_shape | |
# todo: change to 0 and modified image shape | |
h = img.shape[0] | |
w = img.shape[1] | |
ratio = w / float(h) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
norm_img = np.expand_dims(resized_image, -1) | |
norm_img = norm_img.transpose((2, 0, 1)) | |
resized_image = norm_img.astype(np.float32) / 128.0 - 1.0 | |
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, 0:resized_w] = resized_image | |
data["image"] = padding_im | |
return data | |
if self.resize_type == "PIL": | |
image_pil = Image.fromarray(np.uint8(img)) | |
img = image_pil.resize(self.image_shape, Image.ANTIALIAS) | |
img = np.array(img) | |
if self.resize_type == "OpenCV": | |
img = cv2.resize(img, self.image_shape) | |
norm_img = np.expand_dims(img, -1) | |
norm_img = norm_img.transpose((2, 0, 1)) | |
data["image"] = norm_img.astype(np.float32) / 128.0 - 1.0 | |
return data | |
class RecResizeImg(object): | |
def __init__( | |
self, | |
image_shape, | |
infer_mode=False, | |
character_dict_path="./ppocr/utils/ppocr_keys_v1.txt", | |
padding=True, | |
**kwargs | |
): | |
self.image_shape = image_shape | |
self.infer_mode = infer_mode | |
self.character_dict_path = character_dict_path | |
self.padding = padding | |
def __call__(self, data): | |
img = data["image"] | |
if self.infer_mode and self.character_dict_path is not None: | |
norm_img, valid_ratio = resize_norm_img_chinese(img, self.image_shape) | |
else: | |
norm_img, valid_ratio = resize_norm_img(img, self.image_shape, self.padding) | |
data["image"] = norm_img | |
data["valid_ratio"] = valid_ratio | |
return data | |
class SRNRecResizeImg(object): | |
def __init__(self, image_shape, num_heads, max_text_length, **kwargs): | |
self.image_shape = image_shape | |
self.num_heads = num_heads | |
self.max_text_length = max_text_length | |
def __call__(self, data): | |
img = data["image"] | |
norm_img = resize_norm_img_srn(img, self.image_shape) | |
data["image"] = norm_img | |
[ | |
encoder_word_pos, | |
gsrm_word_pos, | |
gsrm_slf_attn_bias1, | |
gsrm_slf_attn_bias2, | |
] = srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length) | |
data["encoder_word_pos"] = encoder_word_pos | |
data["gsrm_word_pos"] = gsrm_word_pos | |
data["gsrm_slf_attn_bias1"] = gsrm_slf_attn_bias1 | |
data["gsrm_slf_attn_bias2"] = gsrm_slf_attn_bias2 | |
return data | |
class SARRecResizeImg(object): | |
def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs): | |
self.image_shape = image_shape | |
self.width_downsample_ratio = width_downsample_ratio | |
def __call__(self, data): | |
img = data["image"] | |
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar( | |
img, self.image_shape, self.width_downsample_ratio | |
) | |
data["image"] = norm_img | |
data["resized_shape"] = resize_shape | |
data["pad_shape"] = pad_shape | |
data["valid_ratio"] = valid_ratio | |
return data | |
class PRENResizeImg(object): | |
def __init__(self, image_shape, **kwargs): | |
""" | |
Accroding to original paper's realization, it's a hard resize method here. | |
So maybe you should optimize it to fit for your task better. | |
""" | |
self.dst_h, self.dst_w = image_shape | |
def __call__(self, data): | |
img = data["image"] | |
resized_img = cv2.resize( | |
img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR | |
) | |
resized_img = resized_img.transpose((2, 0, 1)) / 255 | |
resized_img -= 0.5 | |
resized_img /= 0.5 | |
data["image"] = resized_img.astype(np.float32) | |
return data | |
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25): | |
imgC, imgH, imgW_min, imgW_max = image_shape | |
h = img.shape[0] | |
w = img.shape[1] | |
valid_ratio = 1.0 | |
# make sure new_width is an integral multiple of width_divisor. | |
width_divisor = int(1 / width_downsample_ratio) | |
# resize | |
ratio = w / float(h) | |
resize_w = math.ceil(imgH * ratio) | |
if resize_w % width_divisor != 0: | |
resize_w = round(resize_w / width_divisor) * width_divisor | |
if imgW_min is not None: | |
resize_w = max(imgW_min, resize_w) | |
if imgW_max is not None: | |
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) | |
resize_w = min(imgW_max, resize_w) | |
resized_image = cv2.resize(img, (resize_w, imgH)) | |
resized_image = resized_image.astype("float32") | |
# norm | |
if image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
resize_shape = resized_image.shape | |
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) | |
padding_im[:, :, 0:resize_w] = resized_image | |
pad_shape = padding_im.shape | |
return padding_im, resize_shape, pad_shape, valid_ratio | |
def resize_norm_img(img, image_shape, padding=True): | |
imgC, imgH, imgW = image_shape | |
h = img.shape[0] | |
w = img.shape[1] | |
if not padding: | |
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | |
resized_w = imgW | |
else: | |
ratio = w / float(h) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
resized_image = resized_image.astype("float32") | |
if image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, 0:resized_w] = resized_image | |
valid_ratio = min(1.0, float(resized_w / imgW)) | |
return padding_im, valid_ratio | |
def resize_norm_img_chinese(img, image_shape): | |
imgC, imgH, imgW = image_shape | |
# todo: change to 0 and modified image shape | |
max_wh_ratio = imgW * 1.0 / imgH | |
h, w = img.shape[0], img.shape[1] | |
ratio = w * 1.0 / h | |
max_wh_ratio = max(max_wh_ratio, ratio) | |
imgW = int(imgH * max_wh_ratio) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
resized_image = resized_image.astype("float32") | |
if image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, 0:resized_w] = resized_image | |
valid_ratio = min(1.0, float(resized_w / imgW)) | |
return padding_im, valid_ratio | |
def resize_norm_img_srn(img, image_shape): | |
imgC, imgH, imgW = image_shape | |
img_black = np.zeros((imgH, imgW)) | |
im_hei = img.shape[0] | |
im_wid = img.shape[1] | |
if im_wid <= im_hei * 1: | |
img_new = cv2.resize(img, (imgH * 1, imgH)) | |
elif im_wid <= im_hei * 2: | |
img_new = cv2.resize(img, (imgH * 2, imgH)) | |
elif im_wid <= im_hei * 3: | |
img_new = cv2.resize(img, (imgH * 3, imgH)) | |
else: | |
img_new = cv2.resize(img, (imgW, imgH)) | |
img_np = np.asarray(img_new) | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) | |
img_black[:, 0 : img_np.shape[1]] = img_np | |
img_black = img_black[:, :, np.newaxis] | |
row, col, c = img_black.shape | |
c = 1 | |
return np.reshape(img_black, (c, row, col)).astype(np.float32) | |
def srn_other_inputs(image_shape, num_heads, max_text_length): | |
imgC, imgH, imgW = image_shape | |
feature_dim = int((imgH / 8) * (imgW / 8)) | |
encoder_word_pos = ( | |
np.array(range(0, feature_dim)).reshape((feature_dim, 1)).astype("int64") | |
) | |
gsrm_word_pos = ( | |
np.array(range(0, max_text_length)) | |
.reshape((max_text_length, 1)) | |
.astype("int64") | |
) | |
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) | |
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( | |
[1, max_text_length, max_text_length] | |
) | |
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, [num_heads, 1, 1]) * [-1e9] | |
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( | |
[1, max_text_length, max_text_length] | |
) | |
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, [num_heads, 1, 1]) * [-1e9] | |
return [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] | |
def flag(): | |
""" | |
flag | |
""" | |
return 1 if random.random() > 0.5000001 else -1 | |
def cvtColor(img): | |
""" | |
cvtColor | |
""" | |
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | |
delta = 0.001 * random.random() * flag() | |
hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta) | |
new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
return new_img | |
def blur(img): | |
""" | |
blur | |
""" | |
h, w, _ = img.shape | |
if h > 10 and w > 10: | |
return cv2.GaussianBlur(img, (5, 5), 1) | |
else: | |
return img | |
def jitter(img): | |
""" | |
jitter | |
""" | |
w, h, _ = img.shape | |
if h > 10 and w > 10: | |
thres = min(w, h) | |
s = int(random.random() * thres * 0.01) | |
src_img = img.copy() | |
for i in range(s): | |
img[i:, i:, :] = src_img[: w - i, : h - i, :] | |
return img | |
else: | |
return img | |
def add_gasuss_noise(image, mean=0, var=0.1): | |
""" | |
Gasuss noise | |
""" | |
noise = np.random.normal(mean, var**0.5, image.shape) | |
out = image + 0.5 * noise | |
out = np.clip(out, 0, 255) | |
out = np.uint8(out) | |
return out | |
def get_crop(image): | |
""" | |
random crop | |
""" | |
h, w, _ = image.shape | |
top_min = 1 | |
top_max = 8 | |
top_crop = int(random.randint(top_min, top_max)) | |
top_crop = min(top_crop, h - 1) | |
crop_img = image.copy() | |
ratio = random.randint(0, 1) | |
if ratio: | |
crop_img = crop_img[top_crop:h, :, :] | |
else: | |
crop_img = crop_img[0 : h - top_crop, :, :] | |
return crop_img | |
class Config: | |
""" | |
Config | |
""" | |
def __init__(self, use_tia): | |
self.anglex = random.random() * 30 | |
self.angley = random.random() * 15 | |
self.anglez = random.random() * 10 | |
self.fov = 42 | |
self.r = 0 | |
self.shearx = random.random() * 0.3 | |
self.sheary = random.random() * 0.05 | |
self.borderMode = cv2.BORDER_REPLICATE | |
self.use_tia = use_tia | |
def make(self, w, h, ang): | |
""" | |
make | |
""" | |
self.anglex = random.random() * 5 * flag() | |
self.angley = random.random() * 5 * flag() | |
self.anglez = -1 * random.random() * int(ang) * flag() | |
self.fov = 42 | |
self.r = 0 | |
self.shearx = 0 | |
self.sheary = 0 | |
self.borderMode = cv2.BORDER_REPLICATE | |
self.w = w | |
self.h = h | |
self.perspective = self.use_tia | |
self.stretch = self.use_tia | |
self.distort = self.use_tia | |
self.crop = True | |
self.affine = False | |
self.reverse = True | |
self.noise = True | |
self.jitter = True | |
self.blur = True | |
self.color = True | |
def rad(x): | |
""" | |
rad | |
""" | |
return x * np.pi / 180 | |
def get_warpR(config): | |
""" | |
get_warpR | |
""" | |
anglex, angley, anglez, fov, w, h, r = ( | |
config.anglex, | |
config.angley, | |
config.anglez, | |
config.fov, | |
config.w, | |
config.h, | |
config.r, | |
) | |
if w > 69 and w < 112: | |
anglex = anglex * 1.5 | |
z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2)) | |
# Homogeneous coordinate transformation matrix | |
rx = np.array( | |
[ | |
[1, 0, 0, 0], | |
[0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], | |
[ | |
0, | |
-np.sin(rad(anglex)), | |
np.cos(rad(anglex)), | |
0, | |
], | |
[0, 0, 0, 1], | |
], | |
np.float32, | |
) | |
ry = np.array( | |
[ | |
[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0], | |
[0, 1, 0, 0], | |
[ | |
-np.sin(rad(angley)), | |
0, | |
np.cos(rad(angley)), | |
0, | |
], | |
[0, 0, 0, 1], | |
], | |
np.float32, | |
) | |
rz = np.array( | |
[ | |
[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0], | |
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 1], | |
], | |
np.float32, | |
) | |
r = rx.dot(ry).dot(rz) | |
# generate 4 points | |
pcenter = np.array([h / 2, w / 2, 0, 0], np.float32) | |
p1 = np.array([0, 0, 0, 0], np.float32) - pcenter | |
p2 = np.array([w, 0, 0, 0], np.float32) - pcenter | |
p3 = np.array([0, h, 0, 0], np.float32) - pcenter | |
p4 = np.array([w, h, 0, 0], np.float32) - pcenter | |
dst1 = r.dot(p1) | |
dst2 = r.dot(p2) | |
dst3 = r.dot(p3) | |
dst4 = r.dot(p4) | |
list_dst = np.array([dst1, dst2, dst3, dst4]) | |
org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32) | |
dst = np.zeros((4, 2), np.float32) | |
# Project onto the image plane | |
dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0] | |
dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1] | |
warpR = cv2.getPerspectiveTransform(org, dst) | |
dst1, dst2, dst3, dst4 = dst | |
r1 = int(min(dst1[1], dst2[1])) | |
r2 = int(max(dst3[1], dst4[1])) | |
c1 = int(min(dst1[0], dst3[0])) | |
c2 = int(max(dst2[0], dst4[0])) | |
try: | |
ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1)) | |
dx = -c1 | |
dy = -r1 | |
T1 = np.float32([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0 / ratio]]) | |
ret = T1.dot(warpR) | |
except: | |
ratio = 1.0 | |
T1 = np.float32([[1.0, 0, 0], [0, 1.0, 0], [0, 0, 1.0]]) | |
ret = T1 | |
return ret, (-r1, -c1), ratio, dst | |
def get_warpAffine(config): | |
""" | |
get_warpAffine | |
""" | |
anglez = config.anglez | |
rz = np.array( | |
[ | |
[np.cos(rad(anglez)), np.sin(rad(anglez)), 0], | |
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0], | |
], | |
np.float32, | |
) | |
return rz | |
def warp(img, ang, use_tia=True, prob=0.4): | |
""" | |
warp | |
""" | |
h, w, _ = img.shape | |
config = Config(use_tia=use_tia) | |
config.make(w, h, ang) | |
new_img = img | |
if config.distort: | |
img_height, img_width = img.shape[0:2] | |
if random.random() <= prob and img_height >= 20 and img_width >= 20: | |
new_img = tia_distort(new_img, random.randint(3, 6)) | |
if config.stretch: | |
img_height, img_width = img.shape[0:2] | |
if random.random() <= prob and img_height >= 20 and img_width >= 20: | |
new_img = tia_stretch(new_img, random.randint(3, 6)) | |
if config.perspective: | |
if random.random() <= prob: | |
new_img = tia_perspective(new_img) | |
if config.crop: | |
img_height, img_width = img.shape[0:2] | |
if random.random() <= prob and img_height >= 20 and img_width >= 20: | |
new_img = get_crop(new_img) | |
if config.blur: | |
if random.random() <= prob: | |
new_img = blur(new_img) | |
if config.color: | |
if random.random() <= prob: | |
new_img = cvtColor(new_img) | |
if config.jitter: | |
new_img = jitter(new_img) | |
if config.noise: | |
if random.random() <= prob: | |
new_img = add_gasuss_noise(new_img) | |
if config.reverse: | |
if random.random() <= prob: | |
new_img = 255 - new_img | |
return new_img | |