Spaces:
Runtime error
Runtime error
import math | |
import cv2 | |
import numpy as np | |
__all__ = ["PGProcessTrain"] | |
class PGProcessTrain(object): | |
def __init__( | |
self, | |
character_dict_path, | |
max_text_length, | |
max_text_nums, | |
tcl_len, | |
batch_size=14, | |
min_crop_size=24, | |
min_text_size=4, | |
max_text_size=512, | |
**kwargs | |
): | |
self.tcl_len = tcl_len | |
self.max_text_length = max_text_length | |
self.max_text_nums = max_text_nums | |
self.batch_size = batch_size | |
self.min_crop_size = min_crop_size | |
self.min_text_size = min_text_size | |
self.max_text_size = max_text_size | |
self.Lexicon_Table = self.get_dict(character_dict_path) | |
self.pad_num = len(self.Lexicon_Table) | |
self.img_id = 0 | |
def get_dict(self, character_dict_path): | |
character_str = "" | |
with open(character_dict_path, "rb") as fin: | |
lines = fin.readlines() | |
for line in lines: | |
line = line.decode("utf-8").strip("\n").strip("\r\n") | |
character_str += line | |
dict_character = list(character_str) | |
return dict_character | |
def quad_area(self, poly): | |
""" | |
compute area of a polygon | |
:param poly: | |
:return: | |
""" | |
edge = [ | |
(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]), | |
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]), | |
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]), | |
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1]), | |
] | |
return np.sum(edge) / 2.0 | |
def gen_quad_from_poly(self, poly): | |
""" | |
Generate min area quad from poly. | |
""" | |
point_num = poly.shape[0] | |
min_area_quad = np.zeros((4, 2), dtype=np.float32) | |
rect = cv2.minAreaRect( | |
poly.astype(np.int32) | |
) # (center (x,y), (width, height), angle of rotation) | |
box = np.array(cv2.boxPoints(rect)) | |
first_point_idx = 0 | |
min_dist = 1e4 | |
for i in range(4): | |
dist = ( | |
np.linalg.norm(box[(i + 0) % 4] - poly[0]) | |
+ np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) | |
+ np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) | |
+ np.linalg.norm(box[(i + 3) % 4] - poly[-1]) | |
) | |
if dist < min_dist: | |
min_dist = dist | |
first_point_idx = i | |
for i in range(4): | |
min_area_quad[i] = box[(first_point_idx + i) % 4] | |
return min_area_quad | |
def check_and_validate_polys(self, polys, tags, im_size): | |
""" | |
check so that the text poly is in the same direction, | |
and also filter some invalid polygons | |
:param polys: | |
:param tags: | |
:return: | |
""" | |
(h, w) = im_size | |
if polys.shape[0] == 0: | |
return polys, np.array([]), np.array([]) | |
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1) | |
polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1) | |
validated_polys = [] | |
validated_tags = [] | |
hv_tags = [] | |
for poly, tag in zip(polys, tags): | |
quad = self.gen_quad_from_poly(poly) | |
p_area = self.quad_area(quad) | |
if abs(p_area) < 1: | |
print("invalid poly") | |
continue | |
if p_area > 0: | |
if tag == False: | |
print("poly in wrong direction") | |
tag = True # reversed cases should be ignore | |
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), :] | |
quad = quad[(0, 3, 2, 1), :] | |
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm( | |
quad[3] - quad[2] | |
) | |
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm( | |
quad[1] - quad[2] | |
) | |
hv_tag = 1 | |
if len_w * 2.0 < len_h: | |
hv_tag = 0 | |
validated_polys.append(poly) | |
validated_tags.append(tag) | |
hv_tags.append(hv_tag) | |
return np.array(validated_polys), np.array(validated_tags), np.array(hv_tags) | |
def crop_area( | |
self, im, polys, tags, hv_tags, txts, crop_background=False, max_tries=25 | |
): | |
""" | |
make random crop from the input image | |
:param im: | |
:param polys: [b,4,2] | |
:param tags: | |
:param crop_background: | |
:param max_tries: 50 -> 25 | |
:return: | |
""" | |
h, w, _ = im.shape | |
pad_h = h // 10 | |
pad_w = w // 10 | |
h_array = np.zeros((h + pad_h * 2), dtype=np.int32) | |
w_array = np.zeros((w + pad_w * 2), dtype=np.int32) | |
for poly in polys: | |
poly = np.round(poly, decimals=0).astype(np.int32) | |
minx = np.min(poly[:, 0]) | |
maxx = np.max(poly[:, 0]) | |
w_array[minx + pad_w : maxx + pad_w] = 1 | |
miny = np.min(poly[:, 1]) | |
maxy = np.max(poly[:, 1]) | |
h_array[miny + pad_h : maxy + pad_h] = 1 | |
# ensure the cropped area not across a text | |
h_axis = np.where(h_array == 0)[0] | |
w_axis = np.where(w_array == 0)[0] | |
if len(h_axis) == 0 or len(w_axis) == 0: | |
return im, polys, tags, hv_tags, txts | |
for i in range(max_tries): | |
xx = np.random.choice(w_axis, size=2) | |
xmin = np.min(xx) - pad_w | |
xmax = np.max(xx) - pad_w | |
xmin = np.clip(xmin, 0, w - 1) | |
xmax = np.clip(xmax, 0, w - 1) | |
yy = np.random.choice(h_axis, size=2) | |
ymin = np.min(yy) - pad_h | |
ymax = np.max(yy) - pad_h | |
ymin = np.clip(ymin, 0, h - 1) | |
ymax = np.clip(ymax, 0, h - 1) | |
if xmax - xmin < self.min_crop_size or ymax - ymin < self.min_crop_size: | |
continue | |
if polys.shape[0] != 0: | |
poly_axis_in_area = ( | |
(polys[:, :, 0] >= xmin) | |
& (polys[:, :, 0] <= xmax) | |
& (polys[:, :, 1] >= ymin) | |
& (polys[:, :, 1] <= ymax) | |
) | |
selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0] | |
else: | |
selected_polys = [] | |
if len(selected_polys) == 0: | |
# no text in this area | |
if crop_background: | |
txts_tmp = [] | |
for selected_poly in selected_polys: | |
txts_tmp.append(txts[selected_poly]) | |
txts = txts_tmp | |
return ( | |
im[ymin : ymax + 1, xmin : xmax + 1, :], | |
polys[selected_polys], | |
tags[selected_polys], | |
hv_tags[selected_polys], | |
txts, | |
) | |
else: | |
continue | |
im = im[ymin : ymax + 1, xmin : xmax + 1, :] | |
polys = polys[selected_polys] | |
tags = tags[selected_polys] | |
hv_tags = hv_tags[selected_polys] | |
txts_tmp = [] | |
for selected_poly in selected_polys: | |
txts_tmp.append(txts[selected_poly]) | |
txts = txts_tmp | |
polys[:, :, 0] -= xmin | |
polys[:, :, 1] -= ymin | |
return im, polys, tags, hv_tags, txts | |
return im, polys, tags, hv_tags, txts | |
def fit_and_gather_tcl_points_v2( | |
self, | |
min_area_quad, | |
poly, | |
max_h, | |
max_w, | |
fixed_point_num=64, | |
img_id=0, | |
reference_height=3, | |
): | |
""" | |
Find the center point of poly as key_points, then fit and gather. | |
""" | |
key_point_xys = [] | |
point_num = poly.shape[0] | |
for idx in range(point_num // 2): | |
center_point = (poly[idx] + poly[point_num - 1 - idx]) / 2.0 | |
key_point_xys.append(center_point) | |
tmp_image = np.zeros( | |
shape=( | |
max_h, | |
max_w, | |
), | |
dtype="float32", | |
) | |
cv2.polylines(tmp_image, [np.array(key_point_xys).astype("int32")], False, 1.0) | |
ys, xs = np.where(tmp_image > 0) | |
xy_text = np.array(list(zip(xs, ys)), dtype="float32") | |
left_center_pt = ((min_area_quad[0] - min_area_quad[1]) / 2.0).reshape(1, 2) | |
right_center_pt = ((min_area_quad[1] - min_area_quad[2]) / 2.0).reshape(1, 2) | |
proj_unit_vec = (right_center_pt - left_center_pt) / ( | |
np.linalg.norm(right_center_pt - left_center_pt) + 1e-6 | |
) | |
proj_unit_vec_tile = np.tile(proj_unit_vec, (xy_text.shape[0], 1)) # (n, 2) | |
left_center_pt_tile = np.tile(left_center_pt, (xy_text.shape[0], 1)) # (n, 2) | |
xy_text_to_left_center = xy_text - left_center_pt_tile | |
proj_value = np.sum(xy_text_to_left_center * proj_unit_vec_tile, axis=1) | |
xy_text = xy_text[np.argsort(proj_value)] | |
# convert to np and keep the num of point not greater then fixed_point_num | |
pos_info = np.array(xy_text).reshape(-1, 2)[:, ::-1] # xy-> yx | |
point_num = len(pos_info) | |
if point_num > fixed_point_num: | |
keep_ids = [ | |
int((point_num * 1.0 / fixed_point_num) * x) | |
for x in range(fixed_point_num) | |
] | |
pos_info = pos_info[keep_ids, :] | |
keep = int(min(len(pos_info), fixed_point_num)) | |
if np.random.rand() < 0.2 and reference_height >= 3: | |
dl = (np.random.rand(keep) - 0.5) * reference_height * 0.3 | |
random_float = np.array([1, 0]).reshape([1, 2]) * dl.reshape([keep, 1]) | |
pos_info += random_float | |
pos_info[:, 0] = np.clip(pos_info[:, 0], 0, max_h - 1) | |
pos_info[:, 1] = np.clip(pos_info[:, 1], 0, max_w - 1) | |
# padding to fixed length | |
pos_l = np.zeros((self.tcl_len, 3), dtype=np.int32) | |
pos_l[:, 0] = np.ones((self.tcl_len,)) * img_id | |
pos_m = np.zeros((self.tcl_len, 1), dtype=np.float32) | |
pos_l[:keep, 1:] = np.round(pos_info).astype(np.int32) | |
pos_m[:keep] = 1.0 | |
return pos_l, pos_m | |
def generate_direction_map(self, poly_quads, n_char, direction_map): | |
""" """ | |
width_list = [] | |
height_list = [] | |
for quad in poly_quads: | |
quad_w = ( | |
np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3]) | |
) / 2.0 | |
quad_h = ( | |
np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1]) | |
) / 2.0 | |
width_list.append(quad_w) | |
height_list.append(quad_h) | |
norm_width = max(sum(width_list) / n_char, 1.0) | |
average_height = max(sum(height_list) / len(height_list), 1.0) | |
k = 1 | |
for quad in poly_quads: | |
direct_vector_full = ((quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0 | |
direct_vector = ( | |
direct_vector_full | |
/ (np.linalg.norm(direct_vector_full) + 1e-6) | |
* norm_width | |
) | |
direction_label = tuple( | |
map(float, [direct_vector[0], direct_vector[1], 1.0 / average_height]) | |
) | |
cv2.fillPoly( | |
direction_map, | |
quad.round().astype(np.int32)[np.newaxis, :, :], | |
direction_label, | |
) | |
k += 1 | |
return direction_map | |
def calculate_average_height(self, poly_quads): | |
""" """ | |
height_list = [] | |
for quad in poly_quads: | |
quad_h = ( | |
np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1]) | |
) / 2.0 | |
height_list.append(quad_h) | |
average_height = max(sum(height_list) / len(height_list), 1.0) | |
return average_height | |
def generate_tcl_ctc_label( | |
self, | |
h, | |
w, | |
polys, | |
tags, | |
text_strs, | |
ds_ratio, | |
tcl_ratio=0.3, | |
shrink_ratio_of_width=0.15, | |
): | |
""" | |
Generate polygon. | |
""" | |
score_map_big = np.zeros( | |
( | |
h, | |
w, | |
), | |
dtype=np.float32, | |
) | |
h, w = int(h * ds_ratio), int(w * ds_ratio) | |
polys = polys * ds_ratio | |
score_map = np.zeros( | |
( | |
h, | |
w, | |
), | |
dtype=np.float32, | |
) | |
score_label_map = np.zeros( | |
( | |
h, | |
w, | |
), | |
dtype=np.float32, | |
) | |
tbo_map = np.zeros((h, w, 5), dtype=np.float32) | |
training_mask = np.ones( | |
( | |
h, | |
w, | |
), | |
dtype=np.float32, | |
) | |
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape( | |
[1, 1, 3] | |
).astype(np.float32) | |
label_idx = 0 | |
score_label_map_text_label_list = [] | |
pos_list, pos_mask, label_list = [], [], [] | |
for poly_idx, poly_tag in enumerate(zip(polys, tags)): | |
poly = poly_tag[0] | |
tag = poly_tag[1] | |
# generate min_area_quad | |
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly) | |
min_area_quad_h = 0.5 * ( | |
np.linalg.norm(min_area_quad[0] - min_area_quad[3]) | |
+ np.linalg.norm(min_area_quad[1] - min_area_quad[2]) | |
) | |
min_area_quad_w = 0.5 * ( | |
np.linalg.norm(min_area_quad[0] - min_area_quad[1]) | |
+ np.linalg.norm(min_area_quad[2] - min_area_quad[3]) | |
) | |
if ( | |
min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio | |
or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio | |
): | |
continue | |
if tag: | |
cv2.fillPoly( | |
training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0.15 | |
) | |
else: | |
text_label = text_strs[poly_idx] | |
text_label = self.prepare_text_label(text_label, self.Lexicon_Table) | |
text_label_index_list = [ | |
[self.Lexicon_Table.index(c_)] | |
for c_ in text_label | |
if c_ in self.Lexicon_Table | |
] | |
if len(text_label_index_list) < 1: | |
continue | |
tcl_poly = self.poly2tcl(poly, tcl_ratio) | |
tcl_quads = self.poly2quads(tcl_poly) | |
poly_quads = self.poly2quads(poly) | |
stcl_quads, quad_index = self.shrink_poly_along_width( | |
tcl_quads, | |
shrink_ratio_of_width=shrink_ratio_of_width, | |
expand_height_ratio=1.0 / tcl_ratio, | |
) | |
cv2.fillPoly(score_map, np.round(stcl_quads).astype(np.int32), 1.0) | |
cv2.fillPoly( | |
score_map_big, np.round(stcl_quads / ds_ratio).astype(np.int32), 1.0 | |
) | |
for idx, quad in enumerate(stcl_quads): | |
quad_mask = np.zeros((h, w), dtype=np.float32) | |
quad_mask = cv2.fillPoly( | |
quad_mask, | |
np.round(quad[np.newaxis, :, :]).astype(np.int32), | |
1.0, | |
) | |
tbo_map = self.gen_quad_tbo( | |
poly_quads[quad_index[idx]], quad_mask, tbo_map | |
) | |
# score label map and score_label_map_text_label_list for refine | |
if label_idx == 0: | |
text_pos_list_ = [ | |
[len(self.Lexicon_Table)], | |
] | |
score_label_map_text_label_list.append(text_pos_list_) | |
label_idx += 1 | |
cv2.fillPoly( | |
score_label_map, np.round(poly_quads).astype(np.int32), label_idx | |
) | |
score_label_map_text_label_list.append(text_label_index_list) | |
# direction info, fix-me | |
n_char = len(text_label_index_list) | |
direction_map = self.generate_direction_map( | |
poly_quads, n_char, direction_map | |
) | |
# pos info | |
average_shrink_height = self.calculate_average_height(stcl_quads) | |
pos_l, pos_m = self.fit_and_gather_tcl_points_v2( | |
min_area_quad, | |
poly, | |
max_h=h, | |
max_w=w, | |
fixed_point_num=64, | |
img_id=self.img_id, | |
reference_height=average_shrink_height, | |
) | |
label_l = text_label_index_list | |
if len(text_label_index_list) < 2: | |
continue | |
pos_list.append(pos_l) | |
pos_mask.append(pos_m) | |
label_list.append(label_l) | |
# use big score_map for smooth tcl lines | |
score_map_big_resized = cv2.resize( | |
score_map_big, dsize=None, fx=ds_ratio, fy=ds_ratio | |
) | |
score_map = np.array(score_map_big_resized > 1e-3, dtype="float32") | |
return ( | |
score_map, | |
score_label_map, | |
tbo_map, | |
direction_map, | |
training_mask, | |
pos_list, | |
pos_mask, | |
label_list, | |
score_label_map_text_label_list, | |
) | |
def adjust_point(self, poly): | |
""" | |
adjust point order. | |
""" | |
point_num = poly.shape[0] | |
if point_num == 4: | |
len_1 = np.linalg.norm(poly[0] - poly[1]) | |
len_2 = np.linalg.norm(poly[1] - poly[2]) | |
len_3 = np.linalg.norm(poly[2] - poly[3]) | |
len_4 = np.linalg.norm(poly[3] - poly[0]) | |
if (len_1 + len_3) * 1.5 < (len_2 + len_4): | |
poly = poly[[1, 2, 3, 0], :] | |
elif point_num > 4: | |
vector_1 = poly[0] - poly[1] | |
vector_2 = poly[1] - poly[2] | |
cos_theta = np.dot(vector_1, vector_2) / ( | |
np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6 | |
) | |
theta = np.arccos(np.round(cos_theta, decimals=4)) | |
if abs(theta) > (70 / 180 * math.pi): | |
index = list(range(1, point_num)) + [0] | |
poly = poly[np.array(index), :] | |
return poly | |
def gen_min_area_quad_from_poly(self, poly): | |
""" | |
Generate min area quad from poly. | |
""" | |
point_num = poly.shape[0] | |
min_area_quad = np.zeros((4, 2), dtype=np.float32) | |
if point_num == 4: | |
min_area_quad = poly | |
center_point = np.sum(poly, axis=0) / 4 | |
else: | |
rect = cv2.minAreaRect( | |
poly.astype(np.int32) | |
) # (center (x,y), (width, height), angle of rotation) | |
center_point = rect[0] | |
box = np.array(cv2.boxPoints(rect)) | |
first_point_idx = 0 | |
min_dist = 1e4 | |
for i in range(4): | |
dist = ( | |
np.linalg.norm(box[(i + 0) % 4] - poly[0]) | |
+ np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) | |
+ np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) | |
+ np.linalg.norm(box[(i + 3) % 4] - poly[-1]) | |
) | |
if dist < min_dist: | |
min_dist = dist | |
first_point_idx = i | |
for i in range(4): | |
min_area_quad[i] = box[(first_point_idx + i) % 4] | |
return min_area_quad, center_point | |
def shrink_quad_along_width(self, quad, begin_width_ratio=0.0, end_width_ratio=1.0): | |
""" | |
Generate shrink_quad_along_width. | |
""" | |
ratio_pair = np.array( | |
[[begin_width_ratio], [end_width_ratio]], dtype=np.float32 | |
) | |
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair | |
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair | |
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]]) | |
def shrink_poly_along_width( | |
self, quads, shrink_ratio_of_width, expand_height_ratio=1.0 | |
): | |
""" | |
shrink poly with given length. | |
""" | |
upper_edge_list = [] | |
def get_cut_info(edge_len_list, cut_len): | |
for idx, edge_len in enumerate(edge_len_list): | |
cut_len -= edge_len | |
if cut_len <= 0.000001: | |
ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx] | |
return idx, ratio | |
for quad in quads: | |
upper_edge_len = np.linalg.norm(quad[0] - quad[1]) | |
upper_edge_list.append(upper_edge_len) | |
# length of left edge and right edge. | |
left_length = np.linalg.norm(quads[0][0] - quads[0][3]) * expand_height_ratio | |
right_length = np.linalg.norm(quads[-1][1] - quads[-1][2]) * expand_height_ratio | |
shrink_length = ( | |
min(left_length, right_length, sum(upper_edge_list)) * shrink_ratio_of_width | |
) | |
# shrinking length | |
upper_len_left = shrink_length | |
upper_len_right = sum(upper_edge_list) - shrink_length | |
left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left) | |
left_quad = self.shrink_quad_along_width( | |
quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1 | |
) | |
right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right) | |
right_quad = self.shrink_quad_along_width( | |
quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio | |
) | |
out_quad_list = [] | |
if left_idx == right_idx: | |
out_quad_list.append( | |
[left_quad[0], right_quad[1], right_quad[2], left_quad[3]] | |
) | |
else: | |
out_quad_list.append(left_quad) | |
for idx in range(left_idx + 1, right_idx): | |
out_quad_list.append(quads[idx]) | |
out_quad_list.append(right_quad) | |
return np.array(out_quad_list), list(range(left_idx, right_idx + 1)) | |
def prepare_text_label(self, label_str, Lexicon_Table): | |
""" | |
Prepare text lablel by given Lexicon_Table. | |
""" | |
if len(Lexicon_Table) == 36: | |
return label_str.lower() | |
else: | |
return label_str | |
def vector_angle(self, A, B): | |
""" | |
Calculate the angle between vector AB and x-axis positive direction. | |
""" | |
AB = np.array([B[1] - A[1], B[0] - A[0]]) | |
return np.arctan2(*AB) | |
def theta_line_cross_point(self, theta, point): | |
""" | |
Calculate the line through given point and angle in ax + by + c =0 form. | |
""" | |
x, y = point | |
cos = np.cos(theta) | |
sin = np.sin(theta) | |
return [sin, -cos, cos * y - sin * x] | |
def line_cross_two_point(self, A, B): | |
""" | |
Calculate the line through given point A and B in ax + by + c =0 form. | |
""" | |
angle = self.vector_angle(A, B) | |
return self.theta_line_cross_point(angle, A) | |
def average_angle(self, poly): | |
""" | |
Calculate the average angle between left and right edge in given poly. | |
""" | |
p0, p1, p2, p3 = poly | |
angle30 = self.vector_angle(p3, p0) | |
angle21 = self.vector_angle(p2, p1) | |
return (angle30 + angle21) / 2 | |
def line_cross_point(self, line1, line2): | |
""" | |
line1 and line2 in 0=ax+by+c form, compute the cross point of line1 and line2 | |
""" | |
a1, b1, c1 = line1 | |
a2, b2, c2 = line2 | |
d = a1 * b2 - a2 * b1 | |
if d == 0: | |
print("Cross point does not exist") | |
return np.array([0, 0], dtype=np.float32) | |
else: | |
x = (b1 * c2 - b2 * c1) / d | |
y = (a2 * c1 - a1 * c2) / d | |
return np.array([x, y], dtype=np.float32) | |
def quad2tcl(self, poly, ratio): | |
""" | |
Generate center line by poly clock-wise point. (4, 2) | |
""" | |
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32) | |
p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair | |
p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair | |
return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]]) | |
def poly2tcl(self, poly, ratio): | |
""" | |
Generate center line by poly clock-wise point. | |
""" | |
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32) | |
tcl_poly = np.zeros_like(poly) | |
point_num = poly.shape[0] | |
for idx in range(point_num // 2): | |
point_pair = ( | |
poly[idx] + (poly[point_num - 1 - idx] - poly[idx]) * ratio_pair | |
) | |
tcl_poly[idx] = point_pair[0] | |
tcl_poly[point_num - 1 - idx] = point_pair[1] | |
return tcl_poly | |
def gen_quad_tbo(self, quad, tcl_mask, tbo_map): | |
""" | |
Generate tbo_map for give quad. | |
""" | |
# upper and lower line function: ax + by + c = 0; | |
up_line = self.line_cross_two_point(quad[0], quad[1]) | |
lower_line = self.line_cross_two_point(quad[3], quad[2]) | |
quad_h = 0.5 * ( | |
np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2]) | |
) | |
quad_w = 0.5 * ( | |
np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3]) | |
) | |
# average angle of left and right line. | |
angle = self.average_angle(quad) | |
xy_in_poly = np.argwhere(tcl_mask == 1) | |
for y, x in xy_in_poly: | |
point = (x, y) | |
line = self.theta_line_cross_point(angle, point) | |
cross_point_upper = self.line_cross_point(up_line, line) | |
cross_point_lower = self.line_cross_point(lower_line, line) | |
##FIX, offset reverse | |
upper_offset_x, upper_offset_y = cross_point_upper - point | |
lower_offset_x, lower_offset_y = cross_point_lower - point | |
tbo_map[y, x, 0] = upper_offset_y | |
tbo_map[y, x, 1] = upper_offset_x | |
tbo_map[y, x, 2] = lower_offset_y | |
tbo_map[y, x, 3] = lower_offset_x | |
tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2 | |
return tbo_map | |
def poly2quads(self, poly): | |
""" | |
Split poly into quads. | |
""" | |
quad_list = [] | |
point_num = poly.shape[0] | |
# point pair | |
point_pair_list = [] | |
for idx in range(point_num // 2): | |
point_pair = [poly[idx], poly[point_num - 1 - idx]] | |
point_pair_list.append(point_pair) | |
quad_num = point_num // 2 - 1 | |
for idx in range(quad_num): | |
# reshape and adjust to clock-wise | |
quad_list.append( | |
(np.array(point_pair_list)[[idx, idx + 1]]).reshape(4, 2)[[0, 2, 3, 1]] | |
) | |
return np.array(quad_list) | |
def rotate_im_poly(self, im, text_polys): | |
""" | |
rotate image with 90 / 180 / 270 degre | |
""" | |
im_w, im_h = im.shape[1], im.shape[0] | |
dst_im = im.copy() | |
dst_polys = [] | |
rand_degree_ratio = np.random.rand() | |
rand_degree_cnt = 1 | |
if rand_degree_ratio > 0.5: | |
rand_degree_cnt = 3 | |
for i in range(rand_degree_cnt): | |
dst_im = np.rot90(dst_im) | |
rot_degree = -90 * rand_degree_cnt | |
rot_angle = rot_degree * math.pi / 180.0 | |
n_poly = text_polys.shape[0] | |
cx, cy = 0.5 * im_w, 0.5 * im_h | |
ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0] | |
for i in range(n_poly): | |
wordBB = text_polys[i] | |
poly = [] | |
for j in range(4): # 16->4 | |
sx, sy = wordBB[j][0], wordBB[j][1] | |
dx = ( | |
math.cos(rot_angle) * (sx - cx) | |
- math.sin(rot_angle) * (sy - cy) | |
+ ncx | |
) | |
dy = ( | |
math.sin(rot_angle) * (sx - cx) | |
+ math.cos(rot_angle) * (sy - cy) | |
+ ncy | |
) | |
poly.append([dx, dy]) | |
dst_polys.append(poly) | |
return dst_im, np.array(dst_polys, dtype=np.float32) | |
def __call__(self, data): | |
input_size = 512 | |
im = data["image"] | |
text_polys = data["polys"] | |
text_tags = data["ignore_tags"] | |
text_strs = data["texts"] | |
h, w, _ = im.shape | |
text_polys, text_tags, hv_tags = self.check_and_validate_polys( | |
text_polys, text_tags, (h, w) | |
) | |
if text_polys.shape[0] <= 0: | |
return None | |
# set aspect ratio and keep area fix | |
asp_scales = np.arange(1.0, 1.55, 0.1) | |
asp_scale = np.random.choice(asp_scales) | |
if np.random.rand() < 0.5: | |
asp_scale = 1.0 / asp_scale | |
asp_scale = math.sqrt(asp_scale) | |
asp_wx = asp_scale | |
asp_hy = 1.0 / asp_scale | |
im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy) | |
text_polys[:, :, 0] *= asp_wx | |
text_polys[:, :, 1] *= asp_hy | |
h, w, _ = im.shape | |
if max(h, w) > 2048: | |
rd_scale = 2048.0 / max(h, w) | |
im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale) | |
text_polys *= rd_scale | |
h, w, _ = im.shape | |
if min(h, w) < 16: | |
return None | |
# no background | |
im, text_polys, text_tags, hv_tags, text_strs = self.crop_area( | |
im, text_polys, text_tags, hv_tags, text_strs, crop_background=False | |
) | |
if text_polys.shape[0] == 0: | |
return None | |
# # continue for all ignore case | |
if np.sum((text_tags * 1.0)) >= text_tags.size: | |
return None | |
new_h, new_w, _ = im.shape | |
if (new_h is None) or (new_w is None): | |
return None | |
# resize image | |
std_ratio = float(input_size) / max(new_w, new_h) | |
rand_scales = np.array( | |
[0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0] | |
) | |
rz_scale = std_ratio * np.random.choice(rand_scales) | |
im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale) | |
text_polys[:, :, 0] *= rz_scale | |
text_polys[:, :, 1] *= rz_scale | |
# add gaussian blur | |
if np.random.rand() < 0.1 * 0.5: | |
ks = np.random.permutation(5)[0] + 1 | |
ks = int(ks / 2) * 2 + 1 | |
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0) | |
# add brighter | |
if np.random.rand() < 0.1 * 0.5: | |
im = im * (1.0 + np.random.rand() * 0.5) | |
im = np.clip(im, 0.0, 255.0) | |
# add darker | |
if np.random.rand() < 0.1 * 0.5: | |
im = im * (1.0 - np.random.rand() * 0.5) | |
im = np.clip(im, 0.0, 255.0) | |
# Padding the im to [input_size, input_size] | |
new_h, new_w, _ = im.shape | |
if min(new_w, new_h) < input_size * 0.5: | |
return None | |
im_padded = np.ones((input_size, input_size, 3), dtype=np.float32) | |
im_padded[:, :, 2] = 0.485 * 255 | |
im_padded[:, :, 1] = 0.456 * 255 | |
im_padded[:, :, 0] = 0.406 * 255 | |
# Random the start position | |
del_h = input_size - new_h | |
del_w = input_size - new_w | |
sh, sw = 0, 0 | |
if del_h > 1: | |
sh = int(np.random.rand() * del_h) | |
if del_w > 1: | |
sw = int(np.random.rand() * del_w) | |
# Padding | |
im_padded[sh : sh + new_h, sw : sw + new_w, :] = im.copy() | |
text_polys[:, :, 0] += sw | |
text_polys[:, :, 1] += sh | |
( | |
score_map, | |
score_label_map, | |
border_map, | |
direction_map, | |
training_mask, | |
pos_list, | |
pos_mask, | |
label_list, | |
score_label_map_text_label, | |
) = self.generate_tcl_ctc_label( | |
input_size, input_size, text_polys, text_tags, text_strs, 0.25 | |
) | |
if len(label_list) <= 0: # eliminate negative samples | |
return None | |
pos_list_temp = np.zeros([64, 3]) | |
pos_mask_temp = np.zeros([64, 1]) | |
label_list_temp = np.zeros([self.max_text_length, 1]) + self.pad_num | |
for i, label in enumerate(label_list): | |
n = len(label) | |
if n > self.max_text_length: | |
label_list[i] = label[: self.max_text_length] | |
continue | |
while n < self.max_text_length: | |
label.append([self.pad_num]) | |
n += 1 | |
for i in range(len(label_list)): | |
label_list[i] = np.array(label_list[i]) | |
if len(pos_list) <= 0 or len(pos_list) > self.max_text_nums: | |
return None | |
for __ in range(self.max_text_nums - len(pos_list), 0, -1): | |
pos_list.append(pos_list_temp) | |
pos_mask.append(pos_mask_temp) | |
label_list.append(label_list_temp) | |
if self.img_id == self.batch_size - 1: | |
self.img_id = 0 | |
else: | |
self.img_id += 1 | |
im_padded[:, :, 2] -= 0.485 * 255 | |
im_padded[:, :, 1] -= 0.456 * 255 | |
im_padded[:, :, 0] -= 0.406 * 255 | |
im_padded[:, :, 2] /= 255.0 * 0.229 | |
im_padded[:, :, 1] /= 255.0 * 0.224 | |
im_padded[:, :, 0] /= 255.0 * 0.225 | |
im_padded = im_padded.transpose((2, 0, 1)) | |
images = im_padded[::-1, :, :] | |
tcl_maps = score_map[np.newaxis, :, :] | |
tcl_label_maps = score_label_map[np.newaxis, :, :] | |
border_maps = border_map.transpose((2, 0, 1)) | |
direction_maps = direction_map.transpose((2, 0, 1)) | |
training_masks = training_mask[np.newaxis, :, :] | |
pos_list = np.array(pos_list) | |
pos_mask = np.array(pos_mask) | |
label_list = np.array(label_list) | |
data["images"] = images | |
data["tcl_maps"] = tcl_maps | |
data["tcl_label_maps"] = tcl_label_maps | |
data["border_maps"] = border_maps | |
data["direction_maps"] = direction_maps | |
data["training_masks"] = training_masks | |
data["label_list"] = label_list | |
data["pos_list"] = pos_list | |
data["pos_mask"] = pos_mask | |
return data | |