Spaces:
Runtime error
Runtime error
import os | |
import sys | |
from PIL import Image | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../.."))) | |
os.environ["FLAGS_allocator_strategy"] = "auto_growth" | |
import math | |
import time | |
import cv2 | |
import numpy as np | |
import utility | |
from postprocess import build_post_process | |
def _check_image_file(path): | |
img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff", "gif"} | |
return any([path.lower().endswith(e) for e in img_end]) | |
def get_image_file_list(img_file): | |
imgs_lists = [] | |
if img_file is None or not os.path.exists(img_file): | |
raise Exception("not found any img file in {}".format(img_file)) | |
img_end = {"jpg", "bmp", "png", "jpeg", "rgb", "tif", "tiff", "gif"} | |
if os.path.isfile(img_file) and _check_image_file(img_file): | |
imgs_lists.append(img_file) | |
elif os.path.isdir(img_file): | |
for single_file in os.listdir(img_file): | |
file_path = os.path.join(img_file, single_file) | |
if os.path.isfile(file_path) and _check_image_file(file_path): | |
imgs_lists.append(file_path) | |
if len(imgs_lists) == 0: | |
raise Exception("not found any img file in {}".format(img_file)) | |
imgs_lists = sorted(imgs_lists) | |
return imgs_lists | |
def check_and_read_gif(img_path): | |
if os.path.basename(img_path)[-3:] in ["gif", "GIF"]: | |
gif = cv2.VideoCapture(img_path) | |
ret, frame = gif.read() | |
if not ret: | |
return None, False | |
if len(frame.shape) == 2 or frame.shape[-1] == 1: | |
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) | |
imgvalue = frame[:, :, ::-1] | |
return imgvalue, True | |
return None, False | |
class TextRecognizer(object): | |
def __init__(self, args): | |
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")] | |
self.rec_batch_num = args.rec_batch_num | |
self.rec_algorithm = args.rec_algorithm | |
postprocess_params = { | |
"name": "CTCLabelDecode", | |
"character_dict_path": args.rec_char_dict_path, | |
"use_space_char": args.use_space_char, | |
} | |
if self.rec_algorithm == "SRN": | |
postprocess_params = { | |
"name": "SRNLabelDecode", | |
"character_dict_path": args.rec_char_dict_path, | |
"use_space_char": args.use_space_char, | |
} | |
elif self.rec_algorithm == "RARE": | |
postprocess_params = { | |
"name": "AttnLabelDecode", | |
"character_dict_path": args.rec_char_dict_path, | |
"use_space_char": args.use_space_char, | |
} | |
elif self.rec_algorithm == "NRTR": | |
postprocess_params = { | |
"name": "NRTRLabelDecode", | |
"character_dict_path": args.rec_char_dict_path, | |
"use_space_char": args.use_space_char, | |
} | |
elif self.rec_algorithm == "SAR": | |
postprocess_params = { | |
"name": "SARLabelDecode", | |
"character_dict_path": args.rec_char_dict_path, | |
"use_space_char": args.use_space_char, | |
} | |
self.postprocess_op = build_post_process(postprocess_params) | |
( | |
self.predictor, | |
self.input_tensor, | |
self.output_tensors, | |
self.config, | |
) = utility.create_predictor(args, "rec") | |
self.use_onnx = args.use_onnx | |
def resize_norm_img(self, img, max_wh_ratio): | |
imgC, imgH, imgW = self.rec_image_shape | |
if self.rec_algorithm == "NRTR": | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# return padding_im | |
image_pil = Image.fromarray(np.uint8(img)) | |
img = image_pil.resize([100, 32], Image.ANTIALIAS) | |
img = np.array(img) | |
norm_img = np.expand_dims(img, -1) | |
norm_img = norm_img.transpose((2, 0, 1)) | |
return norm_img.astype(np.float32) / 128.0 - 1.0 | |
assert imgC == img.shape[2] | |
imgW = int((imgH * max_wh_ratio)) | |
if self.use_onnx: | |
w = self.input_tensor.shape[3:][0] | |
if w is not None and w > 0: | |
imgW = w | |
h, w = img.shape[:2] | |
ratio = w / float(h) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
if self.rec_algorithm == "RARE": | |
if resized_w > self.rec_image_shape[2]: | |
resized_w = self.rec_image_shape[2] | |
imgW = self.rec_image_shape[2] | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
resized_image = resized_image.astype("float32") | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, 0:resized_w] = resized_image | |
return padding_im | |
def resize_norm_img_svtr(self, img, image_shape): | |
imgC, imgH, imgW = image_shape | |
resized_image = cv2.resize(img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | |
resized_image = resized_image.astype("float32") | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
return resized_image | |
def resize_norm_img_srn(self, img, image_shape): | |
imgC, imgH, imgW = image_shape | |
img_black = np.zeros((imgH, imgW)) | |
im_hei = img.shape[0] | |
im_wid = img.shape[1] | |
if im_wid <= im_hei * 1: | |
img_new = cv2.resize(img, (imgH * 1, imgH)) | |
elif im_wid <= im_hei * 2: | |
img_new = cv2.resize(img, (imgH * 2, imgH)) | |
elif im_wid <= im_hei * 3: | |
img_new = cv2.resize(img, (imgH * 3, imgH)) | |
else: | |
img_new = cv2.resize(img, (imgW, imgH)) | |
img_np = np.asarray(img_new) | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) | |
img_black[:, 0 : img_np.shape[1]] = img_np | |
img_black = img_black[:, :, np.newaxis] | |
row, col, c = img_black.shape | |
c = 1 | |
return np.reshape(img_black, (c, row, col)).astype(np.float32) | |
def srn_other_inputs(self, image_shape, num_heads, max_text_length): | |
imgC, imgH, imgW = image_shape | |
feature_dim = int((imgH / 8) * (imgW / 8)) | |
encoder_word_pos = ( | |
np.array(range(0, feature_dim)).reshape((feature_dim, 1)).astype("int64") | |
) | |
gsrm_word_pos = ( | |
np.array(range(0, max_text_length)) | |
.reshape((max_text_length, 1)) | |
.astype("int64") | |
) | |
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) | |
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( | |
[-1, 1, max_text_length, max_text_length] | |
) | |
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, [1, num_heads, 1, 1]).astype( | |
"float32" | |
) * [-1e9] | |
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( | |
[-1, 1, max_text_length, max_text_length] | |
) | |
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, [1, num_heads, 1, 1]).astype( | |
"float32" | |
) * [-1e9] | |
encoder_word_pos = encoder_word_pos[np.newaxis, :] | |
gsrm_word_pos = gsrm_word_pos[np.newaxis, :] | |
return [ | |
encoder_word_pos, | |
gsrm_word_pos, | |
gsrm_slf_attn_bias1, | |
gsrm_slf_attn_bias2, | |
] | |
def process_image_srn(self, img, image_shape, num_heads, max_text_length): | |
norm_img = self.resize_norm_img_srn(img, image_shape) | |
norm_img = norm_img[np.newaxis, :] | |
[ | |
encoder_word_pos, | |
gsrm_word_pos, | |
gsrm_slf_attn_bias1, | |
gsrm_slf_attn_bias2, | |
] = self.srn_other_inputs(image_shape, num_heads, max_text_length) | |
gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32) | |
gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32) | |
encoder_word_pos = encoder_word_pos.astype(np.int64) | |
gsrm_word_pos = gsrm_word_pos.astype(np.int64) | |
return ( | |
norm_img, | |
encoder_word_pos, | |
gsrm_word_pos, | |
gsrm_slf_attn_bias1, | |
gsrm_slf_attn_bias2, | |
) | |
def resize_norm_img_sar(self, img, image_shape, width_downsample_ratio=0.25): | |
imgC, imgH, imgW_min, imgW_max = image_shape | |
h = img.shape[0] | |
w = img.shape[1] | |
valid_ratio = 1.0 | |
# make sure new_width is an integral multiple of width_divisor. | |
width_divisor = int(1 / width_downsample_ratio) | |
# resize | |
ratio = w / float(h) | |
resize_w = math.ceil(imgH * ratio) | |
if resize_w % width_divisor != 0: | |
resize_w = round(resize_w / width_divisor) * width_divisor | |
if imgW_min is not None: | |
resize_w = max(imgW_min, resize_w) | |
if imgW_max is not None: | |
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) | |
resize_w = min(imgW_max, resize_w) | |
resized_image = cv2.resize(img, (resize_w, imgH)) | |
resized_image = resized_image.astype("float32") | |
# norm | |
if image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
resize_shape = resized_image.shape | |
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) | |
padding_im[:, :, 0:resize_w] = resized_image | |
pad_shape = padding_im.shape | |
return padding_im, resize_shape, pad_shape, valid_ratio | |
def __call__(self, img_list): | |
img_num = len(img_list) | |
# Calculate the aspect ratio of all text bars | |
width_list = [] | |
for img in img_list: | |
width_list.append(img.shape[1] / float(img.shape[0])) | |
# Sorting can speed up the recognition process | |
indices = np.argsort(np.array(width_list)) | |
rec_res = [["", 0.0]] * img_num | |
batch_num = self.rec_batch_num | |
st = time.time() | |
for beg_img_no in range(0, img_num, batch_num): | |
end_img_no = min(img_num, beg_img_no + batch_num) | |
norm_img_batch = [] | |
imgC, imgH, imgW = self.rec_image_shape | |
max_wh_ratio = imgW / imgH | |
# max_wh_ratio = 0 | |
for ino in range(beg_img_no, end_img_no): | |
h, w = img_list[indices[ino]].shape[0:2] | |
wh_ratio = w * 1.0 / h | |
max_wh_ratio = max(max_wh_ratio, wh_ratio) | |
for ino in range(beg_img_no, end_img_no): | |
if self.rec_algorithm == "SAR": | |
norm_img, _, _, valid_ratio = self.resize_norm_img_sar( | |
img_list[indices[ino]], self.rec_image_shape | |
) | |
norm_img = norm_img[np.newaxis, :] | |
valid_ratio = np.expand_dims(valid_ratio, axis=0) | |
valid_ratios = [] | |
valid_ratios.append(valid_ratio) | |
norm_img_batch.append(norm_img) | |
elif self.rec_algorithm == "SRN": | |
norm_img = self.process_image_srn( | |
img_list[indices[ino]], self.rec_image_shape, 8, 25 | |
) | |
encoder_word_pos_list = [] | |
gsrm_word_pos_list = [] | |
gsrm_slf_attn_bias1_list = [] | |
gsrm_slf_attn_bias2_list = [] | |
encoder_word_pos_list.append(norm_img[1]) | |
gsrm_word_pos_list.append(norm_img[2]) | |
gsrm_slf_attn_bias1_list.append(norm_img[3]) | |
gsrm_slf_attn_bias2_list.append(norm_img[4]) | |
norm_img_batch.append(norm_img[0]) | |
elif self.rec_algorithm == "SVTR": | |
norm_img = self.resize_norm_img_svtr( | |
img_list[indices[ino]], self.rec_image_shape | |
) | |
norm_img = norm_img[np.newaxis, :] | |
norm_img_batch.append(norm_img) | |
else: | |
norm_img = self.resize_norm_img( | |
img_list[indices[ino]], max_wh_ratio | |
) | |
norm_img = norm_img[np.newaxis, :] | |
norm_img_batch.append(norm_img) | |
norm_img_batch = np.concatenate(norm_img_batch) | |
norm_img_batch = norm_img_batch.copy() | |
if self.rec_algorithm == "SRN": | |
encoder_word_pos_list = np.concatenate(encoder_word_pos_list) | |
gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list) | |
gsrm_slf_attn_bias1_list = np.concatenate(gsrm_slf_attn_bias1_list) | |
gsrm_slf_attn_bias2_list = np.concatenate(gsrm_slf_attn_bias2_list) | |
inputs = [ | |
norm_img_batch, | |
encoder_word_pos_list, | |
gsrm_word_pos_list, | |
gsrm_slf_attn_bias1_list, | |
gsrm_slf_attn_bias2_list, | |
] | |
if self.use_onnx: | |
input_dict = {} | |
input_dict[self.input_tensor.name] = norm_img_batch | |
outputs = self.predictor.run(self.output_tensors, input_dict) | |
preds = {"predict": outputs[2]} | |
else: | |
input_names = self.predictor.get_input_names() | |
for i in range(len(input_names)): | |
input_tensor = self.predictor.get_input_handle(input_names[i]) | |
input_tensor.copy_from_cpu(inputs[i]) | |
self.predictor.run() | |
outputs = [] | |
for output_tensor in self.output_tensors: | |
output = output_tensor.copy_to_cpu() | |
outputs.append(output) | |
preds = {"predict": outputs[2]} | |
elif self.rec_algorithm == "SAR": | |
valid_ratios = np.concatenate(valid_ratios) | |
inputs = [ | |
norm_img_batch, | |
valid_ratios, | |
] | |
if self.use_onnx: | |
input_dict = {} | |
input_dict[self.input_tensor.name] = norm_img_batch | |
outputs = self.predictor.run(self.output_tensors, input_dict) | |
preds = outputs[0] | |
else: | |
input_names = self.predictor.get_input_names() | |
for i in range(len(input_names)): | |
input_tensor = self.predictor.get_input_handle(input_names[i]) | |
input_tensor.copy_from_cpu(inputs[i]) | |
self.predictor.run() | |
outputs = [] | |
for output_tensor in self.output_tensors: | |
output = output_tensor.copy_to_cpu() | |
outputs.append(output) | |
preds = outputs[0] | |
else: | |
if self.use_onnx: | |
input_dict = {} | |
input_dict[self.input_tensor.name] = norm_img_batch | |
outputs = self.predictor.run(self.output_tensors, input_dict) | |
preds = outputs[0] | |
else: | |
self.input_tensor.copy_from_cpu(norm_img_batch) | |
self.predictor.run() | |
outputs = [] | |
for output_tensor in self.output_tensors: | |
output = output_tensor.copy_to_cpu() | |
outputs.append(output) | |
if len(outputs) != 1: | |
preds = outputs | |
else: | |
preds = outputs[0] | |
rec_result = self.postprocess_op(preds) | |
for rno in range(len(rec_result)): | |
rec_res[indices[beg_img_no + rno]] = rec_result[rno] | |
return rec_res, time.time() - st | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
text_recognizer = TextRecognizer(args) | |
valid_image_file_list = [] | |
img_list = [] | |
# warmup 2 times | |
if args.warmup: | |
img = np.random.uniform(0, 255, [48, 320, 3]).astype(np.uint8) | |
for i in range(2): | |
res = text_recognizer([img] * int(args.rec_batch_num)) | |
for image_file in image_file_list: | |
img = cv2.imread(image_file) | |
valid_image_file_list.append(image_file) | |
img_list.append(img) | |
for i in range(10): | |
t0 = time.time() | |
rec_res, _ = text_recognizer(img_list) | |
print((time.time() - t0) * 1000) | |
for ino in range(len(img_list)): | |
print("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[ino])) | |
if __name__ == "__main__": | |
main(utility.parse_args()) | |