File size: 36,010 Bytes
5b765fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
from __future__ import absolute_import, division, print_function, unicode_literals

import copy
import json

import numpy as np
from shapely.geometry import LineString, Point, Polygon


class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data["label"]
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data["label"] = label
        return data


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data["label"]
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]["points"]
            txt = label[bno]["transcription"]
            boxes.append(box)
            txts.append(txt)
            if txt in ["*", "###"]:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        if len(boxes) == 0:
            return None
        boxes = self.expand_points_num(boxes)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data["polys"] = boxes
        data["texts"] = txts
        data["ignore_tags"] = txt_tags
        return data

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes


class BaseRecLabelEncode(object):
    """Convert between text-label and text-index"""

    def __init__(self, max_text_length, character_dict_path=None, use_space_char=False):

        self.max_text_len = max_text_length
        self.beg_str = "sos"
        self.end_str = "eos"
        self.lower = False

        if character_dict_path is None:
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
            self.lower = True
        else:
            self.character_str = []
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode("utf-8").strip("\n").strip("\r\n")
                    self.character_str.append(line)
            if use_space_char:
                self.character_str.append(" ")
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
        if len(text) == 0 or len(text) > self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


class NRTRLabelEncode(BaseRecLabelEncode):
    """Convert between text-label and text-index"""

    def __init__(
        self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
    ):

        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

    def __call__(self, data):
        text = data["label"]
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data["length"] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data["label"] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ["blank", "<unk>", "<s>", "</s>"] + dict_character
        return dict_character


class CTCLabelEncode(BaseRecLabelEncode):
    """Convert between text-label and text-index"""

    def __init__(
        self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
    ):
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

    def __call__(self, data):
        text = data["label"]
        text = self.encode(text)
        if text is None:
            return None
        data["length"] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data["label"] = np.array(text)

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data["label_ace"] = np.array(label)
        return data

    def add_special_char(self, dict_character):
        dict_character = ["blank"] + dict_character
        return dict_character


class E2ELabelEncodeTest(BaseRecLabelEncode):
    def __init__(
        self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
    ):
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

    def __call__(self, data):
        import json

        padnum = len(self.dict)
        label = data["label"]
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]["points"]
            txt = label[bno]["transcription"]
            boxes.append(box)
            txts.append(txt)
            if txt in ["*", "###"]:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data["polys"] = boxes
        data["ignore_tags"] = txt_tags
        temp_texts = []
        for text in txts:
            text = text.lower()
            text = self.encode(text)
            if text is None:
                return None
            text = text + [padnum] * (self.max_text_len - len(text))  # use 36 to pad
            temp_texts.append(text)
        data["texts"] = np.array(temp_texts)
        return data


class E2ELabelEncodeTrain(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        import json

        label = data["label"]
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]["points"]
            txt = label[bno]["transcription"]
            boxes.append(box)
            txts.append(txt)
            if txt in ["*", "###"]:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data["polys"] = boxes
        data["texts"] = txts
        data["ignore_tags"] = txt_tags
        return data


class KieLabelEncode(object):
    def __init__(self, character_dict_path, norm=10, directed=False, **kwargs):
        super(KieLabelEncode, self).__init__()
        self.dict = dict({"": 0})
        with open(character_dict_path, "r", encoding="utf-8") as fr:
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
        max_len = 300
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, : len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos["points"], ann_infos["text_inds"]
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get("labels", None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get("edges", None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
        max_num = 300
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
        temp_bboxes[:h, :] = bboxes

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

        temp_padded_text_inds = np.zeros([max_num, max_num])
        temp_padded_text_inds[:h, :] = padded_text_inds

        temp_labels = np.zeros([max_num, max_num])
        temp_labels[:h, : h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos["image"],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag,
        )

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json

        label = data["label"]
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann["points"]
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann["transcription"]
            texts.append(ann["transcription"])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
            if "label" in ann.keys():
                labels.append(ann["label"])
            elif "key_cls" in ann.keys():
                labels.append(ann["key_cls"])
            else:
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
            edges.append(ann.get("edge", 0))
        ann_infos = dict(
            image=data["image"],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels,
        )

        return self.list_to_numpy(ann_infos)


class AttnLabelEncode(BaseRecLabelEncode):
    """Convert between text-label and text-index"""

    def __init__(
        self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
    ):
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
        return dict_character

    def __call__(self, data):
        text = data["label"]
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data["length"] = np.array(len(text))
        text = (
            [0]
            + text
            + [len(self.character) - 1]
            + [0] * (self.max_text_len - len(text) - 2)
        )
        data["label"] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx


class SEEDLabelEncode(BaseRecLabelEncode):
    """Convert between text-label and text-index"""

    def __init__(
        self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
    ):
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

    def add_special_char(self, dict_character):
        self.padding = "padding"
        self.end_str = "eos"
        self.unknown = "unknown"
        dict_character = dict_character + [self.end_str, self.padding, self.unknown]
        return dict_character

    def __call__(self, data):
        text = data["label"]
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data["length"] = np.array(len(text)) + 1  # conclude eos
        text = (
            text
            + [len(self.character) - 3]
            + [len(self.character) - 2] * (self.max_text_len - len(text) - 1)
        )
        data["label"] = np.array(text)
        return data


class SRNLabelEncode(BaseRecLabelEncode):
    """Convert between text-label and text-index"""

    def __init__(
        self,
        max_text_length=25,
        character_dict_path=None,
        use_space_char=False,
        **kwargs
    ):
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data["label"]
        text = self.encode(text)
        char_num = len(self.character)
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data["length"] = np.array(len(text))
        text = text + [char_num - 1] * (self.max_text_len - len(text))
        data["label"] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" % beg_or_end
        return idx


class TableLabelEncode(object):
    """Convert between text-label and text-index"""

    def __init__(
        self,
        max_text_length,
        max_elem_length,
        max_cell_num,
        character_dict_path,
        span_weight=1.0,
        **kwargs
    ):
        self.max_text_length = max_text_length
        self.max_elem_length = max_elem_length
        self.max_cell_num = max_cell_num
        list_character, list_elem = self.load_char_elem_dict(character_dict_path)
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        for i, char in enumerate(list_character):
            self.dict_character[char] = i
        self.dict_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_elem[elem] = i
        self.span_weight = span_weight

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
            substr = lines[0].decode("utf-8").strip("\r\n").split("\t")
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
                character = lines[cno].decode("utf-8").strip("\r\n")
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
                elem = lines[eno].decode("utf-8").strip("\r\n")
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def get_span_idx_list(self):
        span_idx_list = []
        for elem in self.dict_elem:
            if "span" in elem:
                span_idx_list.append(self.dict_elem[elem])
        return span_idx_list

    def __call__(self, data):
        cells = data["cells"]
        structure = data["structure"]["tokens"]
        structure = self.encode(structure, "elem")
        if structure is None:
            return None
        elem_num = len(structure)
        structure = [0] + structure + [len(self.dict_elem) - 1]
        structure = structure + [0] * (self.max_elem_length + 2 - len(structure))
        structure = np.array(structure)
        data["structure"] = structure
        elem_char_idx1 = self.dict_elem["<td>"]
        elem_char_idx2 = self.dict_elem["<td"]
        span_idx_list = self.get_span_idx_list()
        td_idx_list = np.logical_or(
            structure == elem_char_idx1, structure == elem_char_idx2
        )
        td_idx_list = np.where(td_idx_list)[0]

        structure_mask = np.ones((self.max_elem_length + 2, 1), dtype=np.float32)
        bbox_list = np.zeros((self.max_elem_length + 2, 4), dtype=np.float32)
        bbox_list_mask = np.zeros((self.max_elem_length + 2, 1), dtype=np.float32)
        img_height, img_width, img_ch = data["image"].shape
        if len(span_idx_list) > 0:
            span_weight = len(td_idx_list) * 1.0 / len(span_idx_list)
            span_weight = min(max(span_weight, 1.0), self.span_weight)
        for cno in range(len(cells)):
            if "bbox" in cells[cno]:
                bbox = cells[cno]["bbox"].copy()
                bbox[0] = bbox[0] * 1.0 / img_width
                bbox[1] = bbox[1] * 1.0 / img_height
                bbox[2] = bbox[2] * 1.0 / img_width
                bbox[3] = bbox[3] * 1.0 / img_height
                td_idx = td_idx_list[cno]
                bbox_list[td_idx] = bbox
                bbox_list_mask[td_idx] = 1.0
                cand_span_idx = td_idx + 1
                if cand_span_idx < (self.max_elem_length + 2):
                    if structure[cand_span_idx] in span_idx_list:
                        structure_mask[cand_span_idx] = span_weight

        data["bbox_list"] = bbox_list
        data["bbox_list_mask"] = bbox_list_mask
        data["structure_mask"] = structure_mask
        char_beg_idx = self.get_beg_end_flag_idx("beg", "char")
        char_end_idx = self.get_beg_end_flag_idx("end", "char")
        elem_beg_idx = self.get_beg_end_flag_idx("beg", "elem")
        elem_end_idx = self.get_beg_end_flag_idx("end", "elem")
        data["sp_tokens"] = np.array(
            [
                char_beg_idx,
                char_end_idx,
                elem_beg_idx,
                elem_end_idx,
                elem_char_idx1,
                elem_char_idx2,
                self.max_text_length,
                self.max_elem_length,
                self.max_cell_num,
                elem_num,
            ]
        )
        return data

    def encode(self, text, char_or_elem):
        """convert text-label into text-index."""
        if char_or_elem == "char":
            max_len = self.max_text_length
            current_dict = self.dict_character
        else:
            max_len = self.max_elem_length
            current_dict = self.dict_elem
        if len(text) > max_len:
            return None
        if len(text) == 0:
            if char_or_elem == "char":
                return [self.dict_character["space"]]
            else:
                return None
        text_list = []
        for char in text:
            if char not in current_dict:
                return None
            text_list.append(current_dict[char])
        if len(text_list) == 0:
            if char_or_elem == "char":
                return [self.dict_character["space"]]
            else:
                return None
        return text_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = np.array(self.dict_character[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_character[self.end_str])
            else:
                assert False, (
                    "Unsupport type %s in get_beg_end_flag_idx of char" % beg_or_end
                )
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = np.array(self.dict_elem[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict_elem[self.end_str])
            else:
                assert False, (
                    "Unsupport type %s in get_beg_end_flag_idx of elem" % beg_or_end
                )
        else:
            assert False, "Unsupport type %s in char_or_elem" % char_or_elem
        return idx


class SARLabelEncode(BaseRecLabelEncode):
    """Convert between text-label and text-index"""

    def __init__(
        self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
    ):
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data["label"]
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data["length"] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]

        padded_text[: len(target)] = target
        data["label"] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]


class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(
        self, max_text_length, character_dict_path, use_space_char=False, **kwargs
    ):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

    def add_special_char(self, dict_character):
        padding_str = "<PAD>"  # 0
        end_str = "<EOS>"  # 1
        unknown_str = "<UNK>"  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data["label"]
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data["label"] = np.array(encoded_text)
        return data


class VQATokenLabelEncode(object):
    """
    Label encode for NLP VQA methods
    """

    def __init__(
        self,
        class_path,
        contains_re=False,
        add_special_ids=False,
        algorithm="LayoutXLM",
        infer_mode=False,
        ocr_engine=None,
        **kwargs
    ):
        super(VQATokenLabelEncode, self).__init__()
        from paddlenlp.transformers import (
            LayoutLMTokenizer,
            LayoutLMv2Tokenizer,
            LayoutXLMTokenizer,
        )

        from ppocr.utils.utility import load_vqa_bio_label_maps

        tokenizer_dict = {
            "LayoutXLM": {
                "class": LayoutXLMTokenizer,
                "pretrained_model": "layoutxlm-base-uncased",
            },
            "LayoutLM": {
                "class": LayoutLMTokenizer,
                "pretrained_model": "layoutlm-base-uncased",
            },
            "LayoutLMv2": {
                "class": LayoutLMv2Tokenizer,
                "pretrained_model": "layoutlmv2-base-uncased",
            },
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config["class"].from_pretrained(
            tokenizer_config["pretrained_model"]
        )
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine

    def __call__(self, data):
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)

        height, width, _ = data["image"].shape

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
        segment_offset_id = []
        gt_label_list = []

        entities = []

        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()

        data["ocr_info"] = copy.deepcopy(ocr_info)

        for info in ocr_info:
            if train_re:
                # for re
                if len(info["text"]) == 0:
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
            # smooth_box
            bbox = self._smooth_box(info["bbox"], height, width)

            text = info["text"]
            encode_res = self.tokenizer.encode(
                text, pad_to_max_seq_len=False, return_attention_mask=True
            )

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]
            # parse label
            if not self.infer_mode:
                label = info["label"]
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
                    entities.append(
                        {
                            "start": len(input_ids_list),
                            "end": len(input_ids_list) + len(encode_res["input_ids"]),
                            "label": label.upper(),
                        }
                    )
            else:
                entities.append(
                    {
                        "start": len(input_ids_list),
                        "end": len(input_ids_list) + len(encode_res["input_ids"]),
                        "label": "O",
                    }
                )
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
            bbox_list.extend([bbox] * len(encode_res["input_ids"]))
            words_list.append(text)
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data["input_ids"] = input_ids_list
        data["token_type_ids"] = token_type_ids_list
        data["bbox"] = bbox_list
        data["attention_mask"] = [1] * len(input_ids_list)
        data["labels"] = gt_label_list
        data["segment_offset_id"] = segment_offset_id
        data["tokenizer_params"] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id,
        )
        data["entities"] = entities

        if train_re:
            data["relations"] = relations
            data["id2label"] = id2label
            data["empty_entity"] = empty_entity
            data["entity_id_to_index_map"] = entity_id_to_index_map
        return data

    def _load_ocr_info(self, data):
        def trans_poly_to_bbox(poly):
            x1 = np.min([p[0] for p in poly])
            x2 = np.max([p[0] for p in poly])
            y1 = np.min([p[1] for p in poly])
            y2 = np.max([p[1] for p in poly])
            return [x1, y1, x2, y2]

        if self.infer_mode:
            ocr_result = self.ocr_engine.ocr(data["image"], cls=False)
            ocr_info = []
            for res in ocr_result:
                ocr_info.append(
                    {
                        "text": res[1][0],
                        "bbox": trans_poly_to_bbox(res[0]),
                        "poly": res[0],
                    }
                )
            return ocr_info
        else:
            info = data["label"]
            # read text info
            info_dict = json.loads(info)
            return info_dict["ocr_info"]

    def _smooth_box(self, bbox, height, width):
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)
        return bbox

    def _parse_label(self, label, encode_res):
        gt_label = []
        if label.lower() == "other":
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend(
                [self.label2id_map[("i-" + label).upper()]]
                * (len(encode_res["input_ids"]) - 1)
            )
        return gt_label


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(
        self, max_text_length, character_dict_path=None, use_space_char=False, **kwargs
    ):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char
        )

        self.ctc_encode = CTCLabelEncode(
            max_text_length, character_dict_path, use_space_char, **kwargs
        )
        self.sar_encode = SARLabelEncode(
            max_text_length, character_dict_path, use_space_char, **kwargs
        )

    def __call__(self, data):

        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out["img_path"] = data.get("img_path", None)
        data_out["image"] = data["image"]
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out["label_ctc"] = ctc["label"]
        data_out["label_sar"] = sar["label"]
        data_out["length"] = ctc["length"]
        return data_out