File size: 8,671 Bytes
5b765fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from __future__ import absolute_import, division, print_function, unicode_literals

import cv2
import numpy as np


class GenTableMask(object):
    """gen table mask"""

    def __init__(self, shrink_h_max, shrink_w_max, mask_type=0, **kwargs):
        self.shrink_h_max = 5
        self.shrink_w_max = 5
        self.mask_type = mask_type

    def projection(self, erosion, h, w, spilt_threshold=0):
        # 水平投影
        projection_map = np.ones_like(erosion)
        project_val_array = [0 for _ in range(0, h)]

        for j in range(0, h):
            for i in range(0, w):
                if erosion[j, i] == 255:
                    project_val_array[j] += 1
        # 根据数组,获取切割点
        start_idx = 0  # 记录进入字符区的索引
        end_idx = 0  # 记录进入空白区域的索引
        in_text = False  # 是否遍历到了字符区内
        box_list = []
        for i in range(len(project_val_array)):
            if in_text == False and project_val_array[i] > spilt_threshold:  # 进入字符区了
                in_text = True
                start_idx = i
            elif project_val_array[i] <= spilt_threshold and in_text == True:  # 进入空白区了
                end_idx = i
                in_text = False
                if end_idx - start_idx <= 2:
                    continue
                box_list.append((start_idx, end_idx + 1))

        if in_text:
            box_list.append((start_idx, h - 1))
        # 绘制投影直方图
        for j in range(0, h):
            for i in range(0, project_val_array[j]):
                projection_map[j, i] = 0
        return box_list, projection_map

    def projection_cx(self, box_img):
        box_gray_img = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY)
        h, w = box_gray_img.shape
        # 灰度图片进行二值化处理
        ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, cv2.THRESH_BINARY_INV)
        # 纵向腐蚀
        if h < w:
            kernel = np.ones((2, 1), np.uint8)
            erode = cv2.erode(thresh1, kernel, iterations=1)
        else:
            erode = thresh1
        # 水平膨胀
        kernel = np.ones((1, 5), np.uint8)
        erosion = cv2.dilate(erode, kernel, iterations=1)
        # 水平投影
        projection_map = np.ones_like(erosion)
        project_val_array = [0 for _ in range(0, h)]

        for j in range(0, h):
            for i in range(0, w):
                if erosion[j, i] == 255:
                    project_val_array[j] += 1
        # 根据数组,获取切割点
        start_idx = 0  # 记录进入字符区的索引
        end_idx = 0  # 记录进入空白区域的索引
        in_text = False  # 是否遍历到了字符区内
        box_list = []
        spilt_threshold = 0
        for i in range(len(project_val_array)):
            if in_text == False and project_val_array[i] > spilt_threshold:  # 进入字符区了
                in_text = True
                start_idx = i
            elif project_val_array[i] <= spilt_threshold and in_text == True:  # 进入空白区了
                end_idx = i
                in_text = False
                if end_idx - start_idx <= 2:
                    continue
                box_list.append((start_idx, end_idx + 1))

        if in_text:
            box_list.append((start_idx, h - 1))
        # 绘制投影直方图
        for j in range(0, h):
            for i in range(0, project_val_array[j]):
                projection_map[j, i] = 0
        split_bbox_list = []
        if len(box_list) > 1:
            for i, (h_start, h_end) in enumerate(box_list):
                if i == 0:
                    h_start = 0
                if i == len(box_list):
                    h_end = h
                word_img = erosion[h_start : h_end + 1, :]
                word_h, word_w = word_img.shape
                w_split_list, w_projection_map = self.projection(
                    word_img.T, word_w, word_h
                )
                w_start, w_end = w_split_list[0][0], w_split_list[-1][1]
                if h_start > 0:
                    h_start -= 1
                h_end += 1
                word_img = box_img[h_start : h_end + 1 :, w_start : w_end + 1, :]
                split_bbox_list.append([w_start, h_start, w_end, h_end])
        else:
            split_bbox_list.append([0, 0, w, h])
        return split_bbox_list

    def shrink_bbox(self, bbox):
        left, top, right, bottom = bbox
        sh_h = min(max(int((bottom - top) * 0.1), 1), self.shrink_h_max)
        sh_w = min(max(int((right - left) * 0.1), 1), self.shrink_w_max)
        left_new = left + sh_w
        right_new = right - sh_w
        top_new = top + sh_h
        bottom_new = bottom - sh_h
        if left_new >= right_new:
            left_new = left
            right_new = right
        if top_new >= bottom_new:
            top_new = top
            bottom_new = bottom
        return [left_new, top_new, right_new, bottom_new]

    def __call__(self, data):
        img = data["image"]
        cells = data["cells"]
        height, width = img.shape[0:2]
        if self.mask_type == 1:
            mask_img = np.zeros((height, width), dtype=np.float32)
        else:
            mask_img = np.zeros((height, width, 3), dtype=np.float32)
        cell_num = len(cells)
        for cno in range(cell_num):
            if "bbox" in cells[cno]:
                bbox = cells[cno]["bbox"]
                left, top, right, bottom = bbox
                box_img = img[top:bottom, left:right, :].copy()
                split_bbox_list = self.projection_cx(box_img)
                for sno in range(len(split_bbox_list)):
                    split_bbox_list[sno][0] += left
                    split_bbox_list[sno][1] += top
                    split_bbox_list[sno][2] += left
                    split_bbox_list[sno][3] += top

                for sno in range(len(split_bbox_list)):
                    left, top, right, bottom = split_bbox_list[sno]
                    left, top, right, bottom = self.shrink_bbox(
                        [left, top, right, bottom]
                    )
                    if self.mask_type == 1:
                        mask_img[top:bottom, left:right] = 1.0
                        data["mask_img"] = mask_img
                    else:
                        mask_img[top:bottom, left:right, :] = (255, 255, 255)
                        data["image"] = mask_img
        return data


class ResizeTableImage(object):
    def __init__(self, max_len, **kwargs):
        super(ResizeTableImage, self).__init__()
        self.max_len = max_len

    def get_img_bbox(self, cells):
        bbox_list = []
        if len(cells) == 0:
            return bbox_list
        cell_num = len(cells)
        for cno in range(cell_num):
            if "bbox" in cells[cno]:
                bbox = cells[cno]["bbox"]
                bbox_list.append(bbox)
        return bbox_list

    def resize_img_table(self, img, bbox_list, max_len):
        height, width = img.shape[0:2]
        ratio = max_len / (max(height, width) * 1.0)
        resize_h = int(height * ratio)
        resize_w = int(width * ratio)
        img_new = cv2.resize(img, (resize_w, resize_h))
        bbox_list_new = []
        for bno in range(len(bbox_list)):
            left, top, right, bottom = bbox_list[bno].copy()
            left = int(left * ratio)
            top = int(top * ratio)
            right = int(right * ratio)
            bottom = int(bottom * ratio)
            bbox_list_new.append([left, top, right, bottom])
        return img_new, bbox_list_new

    def __call__(self, data):
        img = data["image"]
        if "cells" not in data:
            cells = []
        else:
            cells = data["cells"]
        bbox_list = self.get_img_bbox(cells)
        img_new, bbox_list_new = self.resize_img_table(img, bbox_list, self.max_len)
        data["image"] = img_new
        cell_num = len(cells)
        bno = 0
        for cno in range(cell_num):
            if "bbox" in data["cells"][cno]:
                data["cells"][cno]["bbox"] = bbox_list_new[bno]
                bno += 1
        data["max_len"] = self.max_len
        return data


class PaddingTableImage(object):
    def __init__(self, **kwargs):
        super(PaddingTableImage, self).__init__()

    def __call__(self, data):
        img = data["image"]
        max_len = data["max_len"]
        padding_img = np.zeros((max_len, max_len, 3), dtype=np.float32)
        height, width = img.shape[0:2]
        padding_img[0:height, 0:width, :] = img.copy()
        data["image"] = padding_img
        return data