Spaces:
Runtime error
Runtime error
File size: 9,436 Bytes
5b765fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../..")))
os.environ["FLAGS_allocator_strategy"] = "auto_growth"
import json
import sys
import time
import cv2
import numpy as np
import utility
from postprocess import build_post_process
from ppocr.data import create_operators, transform
class TextDetector(object):
def __init__(self, args):
self.args = args
self.det_algorithm = args.det_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [
{
"DetResizeForTest": {
"limit_side_len": args.det_limit_side_len,
"limit_type": args.det_limit_type,
}
},
{
"NormalizeImage": {
"std": [0.229, 0.224, 0.225],
"mean": [0.485, 0.456, 0.406],
"scale": "1./255.",
"order": "hwc",
}
},
{"ToCHWImage": None},
{"KeepKeys": {"keep_keys": ["image", "shape"]}},
]
postprocess_params = {}
if self.det_algorithm == "DB":
postprocess_params["name"] = "DBPostProcess"
postprocess_params["thresh"] = args.det_db_thresh
postprocess_params["box_thresh"] = args.det_db_box_thresh
postprocess_params["max_candidates"] = 1000
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
postprocess_params["use_dilation"] = args.use_dilation
postprocess_params["score_mode"] = args.det_db_score_mode
elif self.det_algorithm == "EAST":
postprocess_params["name"] = "EASTPostProcess"
postprocess_params["score_thresh"] = args.det_east_score_thresh
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
elif self.det_algorithm == "SAST":
pre_process_list[0] = {
"DetResizeForTest": {"resize_long": args.det_limit_side_len}
}
postprocess_params["name"] = "SASTPostProcess"
postprocess_params["score_thresh"] = args.det_sast_score_thresh
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
self.det_sast_polygon = args.det_sast_polygon
if self.det_sast_polygon:
postprocess_params["sample_pts_num"] = 6
postprocess_params["expand_scale"] = 1.2
postprocess_params["shrink_ratio_of_width"] = 0.2
else:
postprocess_params["sample_pts_num"] = 2
postprocess_params["expand_scale"] = 1.0
postprocess_params["shrink_ratio_of_width"] = 0.3
elif self.det_algorithm == "PSE":
postprocess_params["name"] = "PSEPostProcess"
postprocess_params["thresh"] = args.det_pse_thresh
postprocess_params["box_thresh"] = args.det_pse_box_thresh
postprocess_params["min_area"] = args.det_pse_min_area
postprocess_params["box_type"] = args.det_pse_box_type
postprocess_params["scale"] = args.det_pse_scale
self.det_pse_box_type = args.det_pse_box_type
elif self.det_algorithm == "FCE":
pre_process_list[0] = {"DetResizeForTest": {"rescale_img": [1080, 736]}}
postprocess_params["name"] = "FCEPostProcess"
postprocess_params["scales"] = args.scales
postprocess_params["alpha"] = args.alpha
postprocess_params["beta"] = args.beta
postprocess_params["fourier_degree"] = args.fourier_degree
postprocess_params["box_type"] = args.det_fce_box_type
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
(
self.predictor,
self.input_tensor,
self.output_tensors,
self.config,
) = utility.create_predictor(args, "det")
if self.use_onnx:
img_h, img_w = self.input_tensor.shape[2:]
if img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
pre_process_list[0] = {
"DetResizeForTest": {"image_shape": [img_h, img_w]}
}
self.preprocess_op = create_operators(pre_process_list)
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def clip_det_res(self, points, img_height, img_width):
for pno in range(points.shape[0]):
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
return points
def filter_tag_det_res(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.order_points_clockwise(box)
box = self.clip_det_res(box, img_height, img_width)
rect_width = int(np.linalg.norm(box[0] - box[1]))
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= 3 or rect_height <= 3:
continue
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
img_height, img_width = image_shape[0:2]
dt_boxes_new = []
for box in dt_boxes:
box = self.clip_det_res(box, img_height, img_width)
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes
def __call__(self, img):
ori_im = img.copy()
data = {"image": img}
st = time.time()
data = transform(data, self.preprocess_op)
img, shape_list = data
if img is None:
return None, 0
img = np.expand_dims(img, axis=0)
shape_list = np.expand_dims(shape_list, axis=0)
img = img.copy()
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = img
outputs = self.predictor.run(self.output_tensors, input_dict)
else:
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
if self.det_algorithm == "EAST":
preds["f_geo"] = outputs[0]
preds["f_score"] = outputs[1]
elif self.det_algorithm == "SAST":
preds["f_border"] = outputs[0]
preds["f_score"] = outputs[1]
preds["f_tco"] = outputs[2]
preds["f_tvo"] = outputs[3]
elif self.det_algorithm in ["DB", "PSE"]:
preds["maps"] = outputs[0]
elif self.det_algorithm == "FCE":
for i, output in enumerate(outputs):
preds["level_{}".format(i)] = output
else:
raise NotImplementedError
# self.predictor.try_shrink_memory()
post_result = self.postprocess_op(preds, shape_list)
dt_boxes = post_result[0]["points"]
if (self.det_algorithm == "SAST" and self.det_sast_polygon) or (
self.det_algorithm in ["PSE", "FCE"]
and self.postprocess_op.box_type == "poly"
):
dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
else:
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
et = time.time()
return dt_boxes, et - st
if __name__ == "__main__":
args = utility.parse_args()
image_file_list = ["images/y.png"]
text_detector = TextDetector(args)
count = 0
total_time = 0
draw_img_save = "./inference_results"
if args.warmup:
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
for i in range(2):
res = text_detector(img)
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
save_results = []
for image_file in image_file_list:
img = cv2.imread(image_file)
for _ in range(10):
st = time.time()
dt_boxes, _ = text_detector(img)
elapse = time.time() - st
print(elapse * 1000)
if count > 0:
total_time += elapse
count += 1
save_pred = (
os.path.basename(image_file)
+ "\t"
+ str(json.dumps([x.tolist() for x in dt_boxes]))
+ "\n"
)
save_results.append(save_pred)
src_im = utility.draw_text_det_res(dt_boxes, image_file)
img_name_pure = os.path.split(image_file)[-1]
img_path = os.path.join(draw_img_save, "det_res_{}".format(img_name_pure))
cv2.imwrite(img_path, src_im)
with open(os.path.join(draw_img_save, "det_results.txt"), "w") as f:
f.writelines(save_results)
f.close()
|