File size: 5,022 Bytes
5b765fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""
Locality aware nms.
This code is refered from: https://github.com/songdejia/EAST/blob/master/locality_aware_nms.py
"""

import numpy as np
from shapely.geometry import Polygon


def intersection(g, p):
    """
    Intersection.
    """
    g = Polygon(g[:8].reshape((4, 2)))
    p = Polygon(p[:8].reshape((4, 2)))
    g = g.buffer(0)
    p = p.buffer(0)
    if not g.is_valid or not p.is_valid:
        return 0
    inter = Polygon(g).intersection(Polygon(p)).area
    union = g.area + p.area - inter
    if union == 0:
        return 0
    else:
        return inter / union


def intersection_iog(g, p):
    """
    Intersection_iog.
    """
    g = Polygon(g[:8].reshape((4, 2)))
    p = Polygon(p[:8].reshape((4, 2)))
    if not g.is_valid or not p.is_valid:
        return 0
    inter = Polygon(g).intersection(Polygon(p)).area
    # union = g.area + p.area - inter
    union = p.area
    if union == 0:
        print("p_area is very small")
        return 0
    else:
        return inter / union


def weighted_merge(g, p):
    """
    Weighted merge.
    """
    g[:8] = (g[8] * g[:8] + p[8] * p[:8]) / (g[8] + p[8])
    g[8] = g[8] + p[8]
    return g


def standard_nms(S, thres):
    """
    Standard nms.
    """
    order = np.argsort(S[:, 8])[::-1]
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        ovr = np.array([intersection(S[i], S[t]) for t in order[1:]])

        inds = np.where(ovr <= thres)[0]
        order = order[inds + 1]

    return S[keep]


def standard_nms_inds(S, thres):
    """
    Standard nms, retun inds.
    """
    order = np.argsort(S[:, 8])[::-1]
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        ovr = np.array([intersection(S[i], S[t]) for t in order[1:]])

        inds = np.where(ovr <= thres)[0]
        order = order[inds + 1]

    return keep


def nms(S, thres):
    """
    nms.
    """
    order = np.argsort(S[:, 8])[::-1]
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        ovr = np.array([intersection(S[i], S[t]) for t in order[1:]])

        inds = np.where(ovr <= thres)[0]
        order = order[inds + 1]

    return keep


def soft_nms(boxes_in, Nt_thres=0.3, threshold=0.8, sigma=0.5, method=2):
    """
    soft_nms
    :para boxes_in, N x 9 (coords + score)
    :para threshould, eliminate cases min score(0.001)
    :para Nt_thres, iou_threshi
    :para sigma, gaussian weght
    :method, linear or gaussian
    """
    boxes = boxes_in.copy()
    N = boxes.shape[0]
    if N is None or N < 1:
        return np.array([])
    pos, maxpos = 0, 0
    weight = 0.0
    inds = np.arange(N)
    tbox, sbox = boxes[0].copy(), boxes[0].copy()
    for i in range(N):
        maxscore = boxes[i, 8]
        maxpos = i
        tbox = boxes[i].copy()
        ti = inds[i]
        pos = i + 1
        # get max box
        while pos < N:
            if maxscore < boxes[pos, 8]:
                maxscore = boxes[pos, 8]
                maxpos = pos
            pos = pos + 1
        # add max box as a detection
        boxes[i, :] = boxes[maxpos, :]
        inds[i] = inds[maxpos]
        # swap
        boxes[maxpos, :] = tbox
        inds[maxpos] = ti
        tbox = boxes[i].copy()
        pos = i + 1
        # NMS iteration
        while pos < N:
            sbox = boxes[pos].copy()
            ts_iou_val = intersection(tbox, sbox)
            if ts_iou_val > 0:
                if method == 1:
                    if ts_iou_val > Nt_thres:
                        weight = 1 - ts_iou_val
                    else:
                        weight = 1
                elif method == 2:
                    weight = np.exp(-1.0 * ts_iou_val**2 / sigma)
                else:
                    if ts_iou_val > Nt_thres:
                        weight = 0
                    else:
                        weight = 1
                boxes[pos, 8] = weight * boxes[pos, 8]
                # if box score falls below thresold, discard the box by
                # swaping last box update N
                if boxes[pos, 8] < threshold:
                    boxes[pos, :] = boxes[N - 1, :]
                    inds[pos] = inds[N - 1]
                    N = N - 1
                    pos = pos - 1
            pos = pos + 1

    return boxes[:N]


def nms_locality(polys, thres=0.3):
    """
    locality aware nms of EAST
    :param polys: a N*9 numpy array. first 8 coordinates, then prob
    :return: boxes after nms
    """
    S = []
    p = None
    for g in polys:
        if p is not None and intersection(g, p) > thres:
            p = weighted_merge(g, p)
        else:
            if p is not None:
                S.append(p)
            p = g
    if p is not None:
        S.append(p)

    if len(S) == 0:
        return np.array([])
    return standard_nms(np.array(S), thres)


if __name__ == "__main__":
    # 343,350,448,135,474,143,369,359
    print(Polygon(np.array([[343, 350], [448, 135], [474, 143], [369, 359]])).area)