Spaces:
Runtime error
Runtime error
File size: 12,647 Bytes
5b765fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
from __future__ import absolute_import, division, print_function
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, ".."))
import time
import cv2
import numpy as np
import paddle
from .locality_aware_nms import nms_locality
class SASTPostProcess(object):
"""
The post process for SAST.
"""
def __init__(
self,
score_thresh=0.5,
nms_thresh=0.2,
sample_pts_num=2,
shrink_ratio_of_width=0.3,
expand_scale=1.0,
tcl_map_thresh=0.5,
**kwargs
):
self.score_thresh = score_thresh
self.nms_thresh = nms_thresh
self.sample_pts_num = sample_pts_num
self.shrink_ratio_of_width = shrink_ratio_of_width
self.expand_scale = expand_scale
self.tcl_map_thresh = tcl_map_thresh
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def point_pair2poly(self, point_pair_list):
"""
Transfer vertical point_pairs into poly point in clockwise.
"""
# constract poly
point_num = len(point_pair_list) * 2
point_list = [0] * point_num
for idx, point_pair in enumerate(point_pair_list):
point_list[idx] = point_pair[0]
point_list[point_num - 1 - idx] = point_pair[1]
return np.array(point_list).reshape(-1, 2)
def shrink_quad_along_width(self, quad, begin_width_ratio=0.0, end_width_ratio=1.0):
"""
Generate shrink_quad_along_width.
"""
ratio_pair = np.array(
[[begin_width_ratio], [end_width_ratio]], dtype=np.float32
)
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3):
"""
expand poly along width.
"""
point_num = poly.shape[0]
left_quad = np.array([poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
left_ratio = (
-shrink_ratio_of_width
* np.linalg.norm(left_quad[0] - left_quad[3])
/ (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
)
left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio, 1.0)
right_quad = np.array(
[
poly[point_num // 2 - 2],
poly[point_num // 2 - 1],
poly[point_num // 2],
poly[point_num // 2 + 1],
],
dtype=np.float32,
)
right_ratio = 1.0 + shrink_ratio_of_width * np.linalg.norm(
right_quad[0] - right_quad[3]
) / (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0, right_ratio)
poly[0] = left_quad_expand[0]
poly[-1] = left_quad_expand[-1]
poly[point_num // 2 - 1] = right_quad_expand[1]
poly[point_num // 2] = right_quad_expand[2]
return poly
def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map):
"""Restore quad."""
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
xy_text = xy_text[:, ::-1] # (n, 2)
# Sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 1])]
scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
scores = scores[:, np.newaxis]
# Restore
point_num = int(tvo_map.shape[-1] / 2)
assert point_num == 4
tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :]
xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2)
quads = xy_text_tile - tvo_map
return scores, quads, xy_text
def quad_area(self, quad):
"""
compute area of a quad.
"""
edge = [
(quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]),
(quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]),
(quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]),
(quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1]),
]
return np.sum(edge) / 2.0
def nms(self, dets):
if self.is_python35:
import lanms
dets = lanms.merge_quadrangle_n9(dets, self.nms_thresh)
else:
dets = nms_locality(dets, self.nms_thresh)
return dets
def cluster_by_quads_tco(self, tcl_map, tcl_map_thresh, quads, tco_map):
"""
Cluster pixels in tcl_map based on quads.
"""
instance_count = quads.shape[0] + 1 # contain background
instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32)
if instance_count == 1:
return instance_count, instance_label_map
# predict text center
xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
n = xy_text.shape[0]
xy_text = xy_text[:, ::-1] # (n, 2)
tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2)
pred_tc = xy_text - tco
# get gt text center
m = quads.shape[0]
gt_tc = np.mean(quads, axis=1) # (m, 2)
pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :], (1, m, 1)) # (n, m, 2)
gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2)
dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m)
xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,)
instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign
return instance_count, instance_label_map
def estimate_sample_pts_num(self, quad, xy_text):
"""
Estimate sample points number.
"""
eh = (
np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])
) / 2.0
ew = (
np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])
) / 2.0
dense_sample_pts_num = max(2, int(ew))
dense_xy_center_line = xy_text[
np.linspace(
0,
xy_text.shape[0] - 1,
dense_sample_pts_num,
endpoint=True,
dtype=np.float32,
).astype(np.int32)
]
dense_xy_center_line_diff = dense_xy_center_line[1:] - dense_xy_center_line[:-1]
estimate_arc_len = np.sum(np.linalg.norm(dense_xy_center_line_diff, axis=1))
sample_pts_num = max(2, int(estimate_arc_len / eh))
return sample_pts_num
def detect_sast(
self,
tcl_map,
tvo_map,
tbo_map,
tco_map,
ratio_w,
ratio_h,
src_w,
src_h,
shrink_ratio_of_width=0.3,
tcl_map_thresh=0.5,
offset_expand=1.0,
out_strid=4.0,
):
"""
first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
"""
# restore quad
scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh, tvo_map)
dets = np.hstack((quads, scores)).astype(np.float32, copy=False)
dets = self.nms(dets)
if dets.shape[0] == 0:
return []
quads = dets[:, :-1].reshape(-1, 4, 2)
# Compute quad area
quad_areas = []
for quad in quads:
quad_areas.append(-self.quad_area(quad))
# instance segmentation
# instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
instance_count, instance_label_map = self.cluster_by_quads_tco(
tcl_map, tcl_map_thresh, quads, tco_map
)
# restore single poly with tcl instance.
poly_list = []
for instance_idx in range(1, instance_count):
xy_text = np.argwhere(instance_label_map == instance_idx)[:, ::-1]
quad = quads[instance_idx - 1]
q_area = quad_areas[instance_idx - 1]
if q_area < 5:
continue
#
len1 = float(np.linalg.norm(quad[0] - quad[1]))
len2 = float(np.linalg.norm(quad[1] - quad[2]))
min_len = min(len1, len2)
if min_len < 3:
continue
# filter small CC
if xy_text.shape[0] <= 0:
continue
# filter low confidence instance
xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1:
# if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
continue
# sort xy_text
left_center_pt = np.array(
[[(quad[0, 0] + quad[-1, 0]) / 2.0, (quad[0, 1] + quad[-1, 1]) / 2.0]]
) # (1, 2)
right_center_pt = np.array(
[[(quad[1, 0] + quad[2, 0]) / 2.0, (quad[1, 1] + quad[2, 1]) / 2.0]]
) # (1, 2)
proj_unit_vec = (right_center_pt - left_center_pt) / (
np.linalg.norm(right_center_pt - left_center_pt) + 1e-6
)
proj_value = np.sum(xy_text * proj_unit_vec, axis=1)
xy_text = xy_text[np.argsort(proj_value)]
# Sample pts in tcl map
if self.sample_pts_num == 0:
sample_pts_num = self.estimate_sample_pts_num(quad, xy_text)
else:
sample_pts_num = self.sample_pts_num
xy_center_line = xy_text[
np.linspace(
0,
xy_text.shape[0] - 1,
sample_pts_num,
endpoint=True,
dtype=np.float32,
).astype(np.int32)
]
point_pair_list = []
for x, y in xy_center_line:
# get corresponding offset
offset = tbo_map[y, x, :].reshape(2, 2)
if offset_expand != 1.0:
offset_length = np.linalg.norm(offset, axis=1, keepdims=True)
expand_length = np.clip(
offset_length * (offset_expand - 1), a_min=0.5, a_max=3.0
)
offset_detal = offset / offset_length * expand_length
offset = offset + offset_detal
# original point
ori_yx = np.array([y, x], dtype=np.float32)
point_pair = (
(ori_yx + offset)[:, ::-1]
* out_strid
/ np.array([ratio_w, ratio_h]).reshape(-1, 2)
)
point_pair_list.append(point_pair)
# ndarry: (x, 2), expand poly along width
detected_poly = self.point_pair2poly(point_pair_list)
detected_poly = self.expand_poly_along_width(
detected_poly, shrink_ratio_of_width
)
detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w)
detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h)
poly_list.append(detected_poly)
return poly_list
def __call__(self, outs_dict, shape_list):
score_list = outs_dict["f_score"]
border_list = outs_dict["f_border"]
tvo_list = outs_dict["f_tvo"]
tco_list = outs_dict["f_tco"]
if isinstance(score_list, paddle.Tensor):
score_list = score_list.numpy()
border_list = border_list.numpy()
tvo_list = tvo_list.numpy()
tco_list = tco_list.numpy()
img_num = len(shape_list)
poly_lists = []
for ino in range(img_num):
p_score = score_list[ino].transpose((1, 2, 0))
p_border = border_list[ino].transpose((1, 2, 0))
p_tvo = tvo_list[ino].transpose((1, 2, 0))
p_tco = tco_list[ino].transpose((1, 2, 0))
src_h, src_w, ratio_h, ratio_w = shape_list[ino]
poly_list = self.detect_sast(
p_score,
p_tvo,
p_border,
p_tco,
ratio_w,
ratio_h,
src_w,
src_h,
shrink_ratio_of_width=self.shrink_ratio_of_width,
tcl_map_thresh=self.tcl_map_thresh,
offset_expand=self.expand_scale,
)
poly_lists.append({"points": np.array(poly_list)})
return poly_lists
|