File size: 6,549 Bytes
5b765fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from __future__ import absolute_import, division, print_function

import os
import sys

import paddle

from .extract_textpoint_fast import *
from .extract_textpoint_slow import *

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, ".."))


class PGNet_PostProcess(object):
    # two different post-process
    def __init__(
        self, character_dict_path, valid_set, score_thresh, outs_dict, shape_list
    ):
        self.Lexicon_Table = get_dict(character_dict_path)
        self.valid_set = valid_set
        self.score_thresh = score_thresh
        self.outs_dict = outs_dict
        self.shape_list = shape_list

    def pg_postprocess_fast(self):
        p_score = self.outs_dict["f_score"]
        p_border = self.outs_dict["f_border"]
        p_char = self.outs_dict["f_char"]
        p_direction = self.outs_dict["f_direction"]
        if isinstance(p_score, paddle.Tensor):
            p_score = p_score[0].numpy()
            p_border = p_border[0].numpy()
            p_direction = p_direction[0].numpy()
            p_char = p_char[0].numpy()
        else:
            p_score = p_score[0]
            p_border = p_border[0]
            p_direction = p_direction[0]
            p_char = p_char[0]

        src_h, src_w, ratio_h, ratio_w = self.shape_list[0]
        instance_yxs_list, seq_strs = generate_pivot_list_fast(
            p_score,
            p_char,
            p_direction,
            self.Lexicon_Table,
            score_thresh=self.score_thresh,
        )
        poly_list, keep_str_list = restore_poly(
            instance_yxs_list,
            seq_strs,
            p_border,
            ratio_w,
            ratio_h,
            src_w,
            src_h,
            self.valid_set,
        )
        data = {
            "points": poly_list,
            "texts": keep_str_list,
        }
        return data

    def pg_postprocess_slow(self):
        p_score = self.outs_dict["f_score"]
        p_border = self.outs_dict["f_border"]
        p_char = self.outs_dict["f_char"]
        p_direction = self.outs_dict["f_direction"]
        if isinstance(p_score, paddle.Tensor):
            p_score = p_score[0].numpy()
            p_border = p_border[0].numpy()
            p_direction = p_direction[0].numpy()
            p_char = p_char[0].numpy()
        else:
            p_score = p_score[0]
            p_border = p_border[0]
            p_direction = p_direction[0]
            p_char = p_char[0]
        src_h, src_w, ratio_h, ratio_w = self.shape_list[0]
        is_curved = self.valid_set == "totaltext"
        char_seq_idx_set, instance_yxs_list = generate_pivot_list_slow(
            p_score,
            p_char,
            p_direction,
            score_thresh=self.score_thresh,
            is_backbone=True,
            is_curved=is_curved,
        )
        seq_strs = []
        for char_idx_set in char_seq_idx_set:
            pr_str = "".join([self.Lexicon_Table[pos] for pos in char_idx_set])
            seq_strs.append(pr_str)
        poly_list = []
        keep_str_list = []
        all_point_list = []
        all_point_pair_list = []
        for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs):
            if len(yx_center_line) == 1:
                yx_center_line.append(yx_center_line[-1])

            offset_expand = 1.0
            if self.valid_set == "totaltext":
                offset_expand = 1.2

            point_pair_list = []
            for batch_id, y, x in yx_center_line:
                offset = p_border[:, y, x].reshape(2, 2)
                if offset_expand != 1.0:
                    offset_length = np.linalg.norm(offset, axis=1, keepdims=True)
                    expand_length = np.clip(
                        offset_length * (offset_expand - 1), a_min=0.5, a_max=3.0
                    )
                    offset_detal = offset / offset_length * expand_length
                    offset = offset + offset_detal
                ori_yx = np.array([y, x], dtype=np.float32)
                point_pair = (
                    (ori_yx + offset)[:, ::-1]
                    * 4.0
                    / np.array([ratio_w, ratio_h]).reshape(-1, 2)
                )
                point_pair_list.append(point_pair)

                all_point_list.append(
                    [int(round(x * 4.0 / ratio_w)), int(round(y * 4.0 / ratio_h))]
                )
                all_point_pair_list.append(point_pair.round().astype(np.int32).tolist())

            detected_poly, pair_length_info = point_pair2poly(point_pair_list)
            detected_poly = expand_poly_along_width(
                detected_poly, shrink_ratio_of_width=0.2
            )
            detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w)
            detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h)

            if len(keep_str) < 2:
                continue

            keep_str_list.append(keep_str)
            detected_poly = np.round(detected_poly).astype("int32")
            if self.valid_set == "partvgg":
                middle_point = len(detected_poly) // 2
                detected_poly = detected_poly[
                    [0, middle_point - 1, middle_point, -1], :
                ]
                poly_list.append(detected_poly)
            elif self.valid_set == "totaltext":
                poly_list.append(detected_poly)
            else:
                print("--> Not supported format.")
                exit(-1)
        data = {
            "points": poly_list,
            "texts": keep_str_list,
        }
        return data


class PGPostProcess(object):
    """
    The post process for PGNet.
    """

    def __init__(self, character_dict_path, valid_set, score_thresh, mode, **kwargs):
        self.character_dict_path = character_dict_path
        self.valid_set = valid_set
        self.score_thresh = score_thresh
        self.mode = mode

        # c++ la-nms is faster, but only support python 3.5
        self.is_python35 = False
        if sys.version_info.major == 3 and sys.version_info.minor == 5:
            self.is_python35 = True

    def __call__(self, outs_dict, shape_list):
        post = PGNet_PostProcess(
            self.character_dict_path,
            self.valid_set,
            self.score_thresh,
            outs_dict,
            shape_list,
        )
        if self.mode == "fast":
            data = post.pg_postprocess_fast()
        else:
            data = post.pg_postprocess_slow()
        return data