Spaces:
Runtime error
Runtime error
File size: 7,712 Bytes
5b765fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import cv2
import numpy as np
import paddle
from numpy.fft import ifft
from .poly_nms import *
def fill_hole(input_mask):
h, w = input_mask.shape
canvas = np.zeros((h + 2, w + 2), np.uint8)
canvas[1 : h + 1, 1 : w + 1] = input_mask.copy()
mask = np.zeros((h + 4, w + 4), np.uint8)
cv2.floodFill(canvas, mask, (0, 0), 1)
canvas = canvas[1 : h + 1, 1 : w + 1].astype(np.bool)
return ~canvas | input_mask
def fourier2poly(fourier_coeff, num_reconstr_points=50):
"""Inverse Fourier transform
Args:
fourier_coeff (ndarray): Fourier coefficients shaped (n, 2k+1),
with n and k being candidates number and Fourier degree
respectively.
num_reconstr_points (int): Number of reconstructed polygon points.
Returns:
Polygons (ndarray): The reconstructed polygons shaped (n, n')
"""
a = np.zeros((len(fourier_coeff), num_reconstr_points), dtype="complex")
k = (len(fourier_coeff[0]) - 1) // 2
a[:, 0 : k + 1] = fourier_coeff[:, k:]
a[:, -k:] = fourier_coeff[:, :k]
poly_complex = ifft(a) * num_reconstr_points
polygon = np.zeros((len(fourier_coeff), num_reconstr_points, 2))
polygon[:, :, 0] = poly_complex.real
polygon[:, :, 1] = poly_complex.imag
return polygon.astype("int32").reshape((len(fourier_coeff), -1))
class FCEPostProcess(object):
"""
The post process for FCENet.
"""
def __init__(
self,
scales,
fourier_degree=5,
num_reconstr_points=50,
decoding_type="fcenet",
score_thr=0.3,
nms_thr=0.1,
alpha=1.0,
beta=1.0,
box_type="poly",
**kwargs
):
self.scales = scales
self.fourier_degree = fourier_degree
self.num_reconstr_points = num_reconstr_points
self.decoding_type = decoding_type
self.score_thr = score_thr
self.nms_thr = nms_thr
self.alpha = alpha
self.beta = beta
self.box_type = box_type
def __call__(self, preds, shape_list):
score_maps = []
for key, value in preds.items():
if isinstance(value, paddle.Tensor):
value = value.numpy()
cls_res = value[:, :4, :, :]
reg_res = value[:, 4:, :, :]
score_maps.append([cls_res, reg_res])
return self.get_boundary(score_maps, shape_list)
def resize_boundary(self, boundaries, scale_factor):
"""Rescale boundaries via scale_factor.
Args:
boundaries (list[list[float]]): The boundary list. Each boundary
with size 2k+1 with k>=4.
scale_factor(ndarray): The scale factor of size (4,).
Returns:
boundaries (list[list[float]]): The scaled boundaries.
"""
boxes = []
scores = []
for b in boundaries:
sz = len(b)
valid_boundary(b, True)
scores.append(b[-1])
b = (
(
np.array(b[: sz - 1])
* (np.tile(scale_factor[:2], int((sz - 1) / 2)).reshape(1, sz - 1))
)
.flatten()
.tolist()
)
boxes.append(np.array(b).reshape([-1, 2]))
return np.array(boxes, dtype=np.float32), scores
def get_boundary(self, score_maps, shape_list):
assert len(score_maps) == len(self.scales)
boundaries = []
for idx, score_map in enumerate(score_maps):
scale = self.scales[idx]
boundaries = boundaries + self._get_boundary_single(score_map, scale)
# nms
boundaries = poly_nms(boundaries, self.nms_thr)
boundaries, scores = self.resize_boundary(
boundaries, (1 / shape_list[0, 2:]).tolist()[::-1]
)
boxes_batch = [dict(points=boundaries, scores=scores)]
return boxes_batch
def _get_boundary_single(self, score_map, scale):
assert len(score_map) == 2
assert score_map[1].shape[1] == 4 * self.fourier_degree + 2
return self.fcenet_decode(
preds=score_map,
fourier_degree=self.fourier_degree,
num_reconstr_points=self.num_reconstr_points,
scale=scale,
alpha=self.alpha,
beta=self.beta,
box_type=self.box_type,
score_thr=self.score_thr,
nms_thr=self.nms_thr,
)
def fcenet_decode(
self,
preds,
fourier_degree,
num_reconstr_points,
scale,
alpha=1.0,
beta=2.0,
box_type="poly",
score_thr=0.3,
nms_thr=0.1,
):
"""Decoding predictions of FCENet to instances.
Args:
preds (list(Tensor)): The head output tensors.
fourier_degree (int): The maximum Fourier transform degree k.
num_reconstr_points (int): The points number of the polygon
reconstructed from predicted Fourier coefficients.
scale (int): The down-sample scale of the prediction.
alpha (float) : The parameter to calculate final scores. Score_{final}
= (Score_{text region} ^ alpha)
* (Score_{text center region}^ beta)
beta (float) : The parameter to calculate final score.
box_type (str): Boundary encoding type 'poly' or 'quad'.
score_thr (float) : The threshold used to filter out the final
candidates.
nms_thr (float) : The threshold of nms.
Returns:
boundaries (list[list[float]]): The instance boundary and confidence
list.
"""
assert isinstance(preds, list)
assert len(preds) == 2
assert box_type in ["poly", "quad"]
cls_pred = preds[0][0]
tr_pred = cls_pred[0:2]
tcl_pred = cls_pred[2:]
reg_pred = preds[1][0].transpose([1, 2, 0])
x_pred = reg_pred[:, :, : 2 * fourier_degree + 1]
y_pred = reg_pred[:, :, 2 * fourier_degree + 1 :]
score_pred = (tr_pred[1] ** alpha) * (tcl_pred[1] ** beta)
tr_pred_mask = (score_pred) > score_thr
tr_mask = fill_hole(tr_pred_mask)
tr_contours, _ = cv2.findContours(
tr_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
) # opencv4
mask = np.zeros_like(tr_mask)
boundaries = []
for cont in tr_contours:
deal_map = mask.copy().astype(np.int8)
cv2.drawContours(deal_map, [cont], -1, 1, -1)
score_map = score_pred * deal_map
score_mask = score_map > 0
xy_text = np.argwhere(score_mask)
dxy = xy_text[:, 1] + xy_text[:, 0] * 1j
x, y = x_pred[score_mask], y_pred[score_mask]
c = x + y * 1j
c[:, fourier_degree] = c[:, fourier_degree] + dxy
c *= scale
polygons = fourier2poly(c, num_reconstr_points)
score = score_map[score_mask].reshape(-1, 1)
polygons = poly_nms(np.hstack((polygons, score)).tolist(), nms_thr)
boundaries = boundaries + polygons
boundaries = poly_nms(boundaries, nms_thr)
if box_type == "quad":
new_boundaries = []
for boundary in boundaries:
poly = np.array(boundary[:-1]).reshape(-1, 2).astype(np.float32)
score = boundary[-1]
points = cv2.boxPoints(cv2.minAreaRect(poly))
points = np.int0(points)
new_boundaries.append(points.reshape(-1).tolist() + [score])
boundaries = new_boundaries
return boundaries
|