File size: 9,436 Bytes
5b765fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, "../..")))

os.environ["FLAGS_allocator_strategy"] = "auto_growth"

import json
import sys
import time

import cv2
import numpy as np

import utility
from postprocess import build_post_process
from ppocr.data import create_operators, transform


class TextDetector(object):
    def __init__(self, args):
        self.args = args
        self.det_algorithm = args.det_algorithm
        self.use_onnx = args.use_onnx
        pre_process_list = [
            {
                "DetResizeForTest": {
                    "limit_side_len": args.det_limit_side_len,
                    "limit_type": args.det_limit_type,
                }
            },
            {
                "NormalizeImage": {
                    "std": [0.229, 0.224, 0.225],
                    "mean": [0.485, 0.456, 0.406],
                    "scale": "1./255.",
                    "order": "hwc",
                }
            },
            {"ToCHWImage": None},
            {"KeepKeys": {"keep_keys": ["image", "shape"]}},
        ]
        postprocess_params = {}
        if self.det_algorithm == "DB":
            postprocess_params["name"] = "DBPostProcess"
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
            postprocess_params["use_dilation"] = args.use_dilation
            postprocess_params["score_mode"] = args.det_db_score_mode
        elif self.det_algorithm == "EAST":
            postprocess_params["name"] = "EASTPostProcess"
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
        elif self.det_algorithm == "SAST":
            pre_process_list[0] = {
                "DetResizeForTest": {"resize_long": args.det_limit_side_len}
            }
            postprocess_params["name"] = "SASTPostProcess"
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
        elif self.det_algorithm == "PSE":
            postprocess_params["name"] = "PSEPostProcess"
            postprocess_params["thresh"] = args.det_pse_thresh
            postprocess_params["box_thresh"] = args.det_pse_box_thresh
            postprocess_params["min_area"] = args.det_pse_min_area
            postprocess_params["box_type"] = args.det_pse_box_type
            postprocess_params["scale"] = args.det_pse_scale
            self.det_pse_box_type = args.det_pse_box_type
        elif self.det_algorithm == "FCE":
            pre_process_list[0] = {"DetResizeForTest": {"rescale_img": [1080, 736]}}
            postprocess_params["name"] = "FCEPostProcess"
            postprocess_params["scales"] = args.scales
            postprocess_params["alpha"] = args.alpha
            postprocess_params["beta"] = args.beta
            postprocess_params["fourier_degree"] = args.fourier_degree
            postprocess_params["box_type"] = args.det_fce_box_type

        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
        (
            self.predictor,
            self.input_tensor,
            self.output_tensors,
            self.config,
        ) = utility.create_predictor(args, "det")

        if self.use_onnx:
            img_h, img_w = self.input_tensor.shape[2:]
            if img_h is not None and img_w is not None and img_h > 0 and img_w > 0:
                pre_process_list[0] = {
                    "DetResizeForTest": {"image_shape": [img_h, img_w]}
                }
        self.preprocess_op = create_operators(pre_process_list)

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(points.shape[0]):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            box = self.clip_det_res(box, img_height, img_width)
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 3 or rect_height <= 3:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def __call__(self, img):
        ori_im = img.copy()
        data = {"image": img}

        st = time.time()

        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
            return None, 0
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
        img = img.copy()

        if self.use_onnx:
            input_dict = {}
            input_dict[self.input_tensor.name] = img
            outputs = self.predictor.run(self.output_tensors, input_dict)
        else:
            self.input_tensor.copy_from_cpu(img)
            self.predictor.run()
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)

        preds = {}
        if self.det_algorithm == "EAST":
            preds["f_geo"] = outputs[0]
            preds["f_score"] = outputs[1]
        elif self.det_algorithm == "SAST":
            preds["f_border"] = outputs[0]
            preds["f_score"] = outputs[1]
            preds["f_tco"] = outputs[2]
            preds["f_tvo"] = outputs[3]
        elif self.det_algorithm in ["DB", "PSE"]:
            preds["maps"] = outputs[0]
        elif self.det_algorithm == "FCE":
            for i, output in enumerate(outputs):
                preds["level_{}".format(i)] = output
        else:
            raise NotImplementedError

        # self.predictor.try_shrink_memory()
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]["points"]
        if (self.det_algorithm == "SAST" and self.det_sast_polygon) or (
            self.det_algorithm in ["PSE", "FCE"]
            and self.postprocess_op.box_type == "poly"
        ):
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)

        et = time.time()
        return dt_boxes, et - st


if __name__ == "__main__":
    args = utility.parse_args()
    image_file_list = ["images/y.png"]
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
    draw_img_save = "./inference_results"

    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(2):
            res = text_detector(img)

    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)

    save_results = []
    for image_file in image_file_list:
        img = cv2.imread(image_file)

        for _ in range(10):
            st = time.time()
            dt_boxes, _ = text_detector(img)
            elapse = time.time() - st
            print(elapse * 1000)
        if count > 0:
            total_time += elapse
        count += 1
        save_pred = (
            os.path.basename(image_file)
            + "\t"
            + str(json.dumps([x.tolist() for x in dt_boxes]))
            + "\n"
        )
        save_results.append(save_pred)
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
        img_name_pure = os.path.split(image_file)[-1]
        img_path = os.path.join(draw_img_save, "det_res_{}".format(img_name_pure))
        cv2.imwrite(img_path, src_im)

    with open(os.path.join(draw_img_save, "det_results.txt"), "w") as f:
        f.writelines(save_results)
        f.close()