File size: 6,209 Bytes
a43c3a5
 
 
 
 
 
 
 
5b765fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a43c3a5
 
 
 
 
 
5b765fe
a43c3a5
 
5b765fe
 
 
a43c3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b765fe
a43c3a5
 
5b765fe
a43c3a5
 
 
 
 
 
 
 
 
 
 
 
5b765fe
 
 
 
 
 
 
 
a43c3a5
5b765fe
 
a43c3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b765fe
 
 
 
 
 
 
 
 
a43c3a5
 
 
5b765fe
a43c3a5
 
 
 
 
5b765fe
a43c3a5
5b765fe
 
 
 
 
a43c3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b765fe
 
 
 
 
 
a43c3a5
5b765fe
 
 
a43c3a5
5b765fe
 
 
 
 
a43c3a5
 
 
5b765fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import gradio as gr
import json
import csv
import openai
import ast
import os
from deta import Deta

os.chdir("ocr")
import utility
import numpy as np
from detector import TextDetector
from recognizer import TextRecognizer

# Global Detector and Recognizer
args = utility.parse_args()
text_recognizer = TextRecognizer(args)
text_detector = TextDetector(args)

openai.api_key = os.getenv("API_KEY")

args = utility.parse_args()
text_recognizer = TextRecognizer(args)
text_detector = TextDetector(args)


def apply_ocr(img):
    # Detect text regions
    dt_boxes, _ = text_detector(img)

    boxes = []
    for box in dt_boxes:
        p1, p2, p3, p4 = box
        x1 = min(p1[0], p2[0], p3[0], p4[0])
        y1 = min(p1[1], p2[1], p3[1], p4[1])
        x2 = max(p1[0], p2[0], p3[0], p4[0])
        y2 = max(p1[1], p2[1], p3[1], p4[1])
        boxes.append([x1, y1, x2, y2])

    # Recognize text
    img_list = []
    for i in range(len(boxes)):
        x1, y1, x2, y2 = map(int, boxes[i])
        img_list.append(img.copy()[y1:y2, x1:x2])
    img_list.reverse()

    rec_res, _ = text_recognizer(img_list)

    # Postprocess
    total_text = ""
    for i in range(len(rec_res)):
        total_text += rec_res[i][0] + " "

    total_text = total_text.strip()
    return total_text


def get_parsed_address(input_img):

    address_full_text = get_text(input_img)
    return openai_response(address_full_text)


def get_text(input_img):
    input_img = np.array(input_img)
    result = apply_ocr(input_img)
    print(result)
    return " ".join(result)


def save_csv(mahalle, il, sokak, apartman):
    adres_full = [mahalle, il, sokak, apartman]

    with open("adress_book.csv", "a", encoding="utf-8") as f:
        write = csv.writer(f)
        write.writerow(adres_full)
    return adres_full


def get_json(mahalle, il, sokak, apartman):
    adres = {"mahalle": mahalle, "il": il, "sokak": sokak, "apartman": apartman}
    dump = json.dumps(adres, indent=4, ensure_ascii=False)
    return dump


def write_db(data_dict):
    # 2) initialize with a project key
    deta_key = os.getenv("DETA_KEY")
    deta = Deta(deta_key)

    # 3) create and use as many DBs as you want!
    users = deta.Base("deprem-ocr")
    users.insert(data_dict)


def text_dict(input):
    eval_result = ast.literal_eval(input)
    write_db(eval_result)

    return (
        str(eval_result["city"]),
        str(eval_result["distinct"]),
        str(eval_result["neighbourhood"]),
        str(eval_result["street"]),
        str(eval_result["address"]),
        str(eval_result["tel"]),
        str(eval_result["name_surname"]),
        str(eval_result["no"]),
    )


def openai_response(ocr_input):
    prompt = f"""Tabular Data Extraction You are a highly intelligent and accurate tabular data extractor from 
            plain text input and especially from emergency text that carries address information, your inputs can be text 
            of arbitrary size, but the output should be in [{{'tabular': {{'entity_type': 'entity'}} }}] JSON format Force it 
            to only extract keys that are shared as an example in the examples section, if a key value is not found in the 
            text input, then it should be ignored. Have only city, distinct, neighbourhood, 
            street, no, tel, name_surname, address Examples: Input: Deprem sırasında evimizde yer alan adresimiz: İstanbul, 
            Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35, cep telefonu numaram 5551231256, adim Ahmet Yilmaz 
            Output: {{'city': 'İstanbul', 'distinct': 'Beşiktaş', 'neighbourhood': 'Yıldız Mahallesi', 'street': 'Cumhuriyet Caddesi', 'no': '35', 'tel': '5551231256', 'name_surname': 'Ahmet Yılmaz', 'address': 'İstanbul, Beşiktaş, Yıldız Mahallesi, Cumhuriyet Caddesi No: 35'}}
            Input: {ocr_input}
            Output:
        """

    response = openai.Completion.create(
        model="text-davinci-003",
        prompt=prompt,
        temperature=0,
        max_tokens=300,
        top_p=1,
        frequency_penalty=0.0,
        presence_penalty=0.0,
        stop=["\n"],
    )
    resp = response["choices"][0]["text"]
    print(resp)
    resp = eval(resp.replace("'{", "{").replace("}'", "}"))
    resp["input"] = ocr_input
    dict_keys = [
        "city",
        "distinct",
        "neighbourhood",
        "street",
        "no",
        "tel",
        "name_surname",
        "address",
        "input",
    ]
    for key in dict_keys:
        if key not in resp.keys():
            resp[key] = ""
    return resp


with gr.Blocks() as demo:
    gr.Markdown(
        """
    # Enkaz Bildirme Uygulaması
    """
    )
    gr.Markdown(
        "Bu uygulamada ekran görüntüsü sürükleyip bırakarak AFAD'a enkaz bildirimi yapabilirsiniz. Mesajı metin olarak da girebilirsiniz, tam adresi ayrıştırıp döndürür. API olarak kullanmak isterseniz sayfanın en altında use via api'ya tıklayın."
    )
    with gr.Row():
        img_area = gr.Image(label="Ekran Görüntüsü yükleyin 👇")
        ocr_result = gr.Textbox(label="Metin yükleyin 👇 ")
    open_api_text = gr.Textbox(label="Tam Adres")
    submit_button = gr.Button(label="Yükle")
    with gr.Column():
        with gr.Row():
            city = gr.Textbox(label="İl")
            distinct = gr.Textbox(label="İlçe")
        with gr.Row():
            neighbourhood = gr.Textbox(label="Mahalle")
            street = gr.Textbox(label="Sokak/Cadde/Bulvar")
        with gr.Row():
            tel = gr.Textbox(label="Telefon")
        with gr.Row():
            name_surname = gr.Textbox(label="İsim Soyisim")
            address = gr.Textbox(label="Adres")
        with gr.Row():
            no = gr.Textbox(label="Kapı No")

    submit_button.click(
        get_parsed_address,
        inputs=img_area,
        outputs=open_api_text,
        api_name="upload_image",
    )

    ocr_result.change(
        openai_response, ocr_result, open_api_text, api_name="upload-text"
    )

    open_api_text.change(
        text_dict,
        open_api_text,
        [city, distinct, neighbourhood, street, address, tel, name_surname, no],
    )


if __name__ == "__main__":
    demo.launch()