Spaces:
Sleeping
Sleeping
File size: 8,393 Bytes
172a1e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# -*- coding: utf-8 -*-
import numpy as np
import copy
from operator import itemgetter
import time
def rollout_policy_fn(board):
"""a coarse, fast version of policy_fn used in the rollout phase."""
# rollout randomly
action_probs = np.random.rand(len(board.availables))
return zip(board.availables, action_probs)
# 决策价值函数
def policy_value_fn(board):
"""a function that takes in a state and outputs a list of (action, probability)
tuples and a score for the state"""
# return uniform probabilities and 0 score for pure MCTS
action_probs = np.ones(len(board.availables))/len(board.availables)
return zip(board.availables, action_probs), 0
class TreeNode(object):
"""A node in the MCTS tree. Each node keeps track of its own value Q,
prior probability P, and its visit-count-adjusted prior score u.
"""
def __init__(self, parent, prior_p):
self._parent = parent
self._children = {} # a map from action to TreeNode
self._n_visits = 0
self._Q = 0
self._u = 0
self._P = prior_p
def expand(self, action_priors):
"""Expand tree by creating new children.
action_priors: a list of tuples of actions and their prior probability
according to the policy function.
"""
for action, prob in action_priors:
if action not in self._children:
self._children[action] = TreeNode(self, prob)
def select(self, c_puct):
"""Select action among children that gives maximum action value Q
plus bonus u(P).
Return: A tuple of (action, next_node)
"""
return max(self._children.items(),
key=lambda act_node: act_node[1].get_value(c_puct))
def update(self, leaf_value):
"""Update node values from leaf evaluation.
leaf_value: the value of subtree evaluation from the current player's
perspective.
"""
# Count visit.
self._n_visits += 1
# Update Q, a running average of values for all visits.
# print("=====================================")
# print("Before, Q: {}, visits: {}, leaf_value: {}".format(self._Q, self._n_visits,leaf_value))
self._Q += 1.0*(leaf_value - self._Q) / self._n_visits
# print("After, Q: {}, visits: {}, leaf_value: {}".format(self._Q, self._n_visits,leaf_value))
def update_recursive(self, leaf_value):
"""Like a call to update(), but applied recursively for all ancestors.
"""
# If it is not root, this node's parent should be updated first.
if self._parent:
self._parent.update_recursive(-leaf_value)
self.update(leaf_value)
def get_value(self, c_puct):
"""Calculate and return the value for this node.
It is a combination of leaf evaluations Q, and this node's prior
adjusted for its visit count, u.
c_puct: a number in (0, inf) controlling the relative impact of
value Q, and prior probability P, on this node's score.
"""
self._u = (c_puct * self._P *
np.sqrt(self._parent._n_visits) / (1 + self._n_visits))
return self._Q + self._u
def is_leaf(self):
"""Check if leaf node (i.e. no nodes below this have been expanded).
"""
return self._children == {}
def is_root(self):
return self._parent is None
class MCTS(object):
"""A simple implementation of Monte Carlo Tree Search."""
def __init__(self, policy_value_fn, c_puct=5, n_playout=2000):
"""
policy_value_fn: a function that takes in a board state and outputs
a list of (action, probability) tuples and also a score in [-1, 1]
(i.e. the expected value of the end game score from the current
player's perspective) for the current player.
c_puct: a number in (0, inf) that controls how quickly exploration
converges to the maximum-value policy. A higher value means
relying on the prior more. ???
"""
self._root = TreeNode(None, 1.0)
self._policy = policy_value_fn
self._c_puct = c_puct
self._n_playout = n_playout
def _playout(self, state):
"""Run a single playout from the root to the leaf, getting a value at
the leaf and propagating it back through its parents.
State is modified in-place, so a copy must be provided.
"""
node = self._root
while(1):
if node.is_leaf():
break
# Greedily select next move.
action, node = node.select(self._c_puct)
state.do_move(action)
action_probs, _ = self._policy(state)
# Check for end of game
end, winner = state.game_end()
if not end:
node.expand(action_probs)
# Evaluate the leaf node by random rollout
leaf_value = self._evaluate_rollout(state)
# Update value and visit count of nodes in this traversal.
node.update_recursive(-leaf_value)
def _evaluate_rollout(self, state, limit=1000):
"""Use the rollout policy to play until the end of the game,
returning +1 if the current player wins, -1 if the opponent wins,
and 0 if it is a tie.
"""
player = state.get_current_player()
for i in range(limit):
end, winner = state.game_end()
if end:
break
action_probs = rollout_policy_fn(state)
max_action = max(action_probs, key=itemgetter(1))[0]
state.do_move(max_action)
else:
# If no break from the loop, issue a warning.
print("WARNING: rollout reached move limit")
if winner == -1: # tie
return 0
else:
return 1 if winner == player else -1
def get_move(self, state):
"""Runs all playouts sequentially and returns the most visited action.
state: the current game state
Return: the selected action
"""
start_time = time.time()
# n_playout 探索的次数
for n in range(self._n_playout):
state_copy = copy.deepcopy(state)
self._playout(state_copy)
need_time = time.time() - start_time
print(f" PureMCTS sum_time: {need_time / self._n_playout }, total_simulation: {self._n_playout}")
return max(self._root._children.items(),key=lambda act_node: act_node[1]._n_visits)[0], need_time / self._n_playout
def update_with_move(self, last_move):
"""Step forward in the tree, keeping everything we already know
about the subtree.
"""
if last_move in self._root._children:
self._root = self._root._children[last_move]
self._root._parent = None
else:
self._root = TreeNode(None, 1.0)
def __str__(self):
return "MCTS"
class MCTSPlayer(object):
"""AI player based on MCTS"""
def __init__(self, c_puct=5, n_playout=2000):
self.mcts = MCTS(policy_value_fn, c_puct, n_playout)
def set_player_ind(self, p):
self.player = p
def reset_player(self):
self.mcts.update_with_move(-1)
def get_action(self, board):
sensible_moves = board.availables
if len(sensible_moves) > 0:
move, simul_mean_time = self.mcts.get_move(board)
self.mcts.update_with_move(-1)
print("MCTS move:", move)
return move, simul_mean_time
else:
print("WARNING: the board is full")
def __str__(self):
return "MCTS {}".format(self.player)
# 多了下面这一串代码
class Human_Player(object):
def __init__(self):
pass
def set_player_ind(self, p):
self.player = p
def get_action(self, board):
sensible_moves = board.availables
if len(sensible_moves) > 0:
# print(sensible_moves)
move = int(input("Input the move:"))
while (move not in sensible_moves ):
print(sensible_moves)
move = int(input("Input the move again:"))
return move
else:
print("WARNING: the board is full")
def __str__(self):
return "Human {}".format(self.player)
|