Spaces:
Sleeping
Sleeping
File size: 6,247 Bytes
172a1e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def set_learning_rate(optimizer, lr):
"""Sets the learning rate to the given value"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class DuelingDQNNet(nn.Module):
"""Dueling DQN network module"""
def __init__(self, board_width, board_height):
super(DuelingDQNNet, self).__init__()
self.board_width = board_width
self.board_height = board_height
# common layers
self.conv1 = nn.Conv2d(4, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
# advantage layers
self.adv_conv1 = nn.Conv2d(128, 4, kernel_size=1)
self.adv_fc1 = nn.Linear(4*board_width*board_height,
board_width*board_height)
# value layers
self.val_conv1 = nn.Conv2d(128, 2, kernel_size=1)
self.val_fc1 = nn.Linear(2*board_width*board_height, 64)
self.val_fc2 = nn.Linear(64, 1)
def forward(self, state_input):
# common layers
x = F.relu(self.conv1(state_input))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
# advantage stream
adv = F.relu(self.adv_conv1(x))
adv = adv.view(-1, 4*self.board_width*self.board_height)
adv = self.adv_fc1(adv)
# value stream
val = F.relu(self.val_conv1(x))
val = val.view(-1, 2*self.board_width*self.board_height)
val = F.relu(self.val_fc1(val))
val = self.val_fc2(val)
q_values = val + adv - adv.mean(dim=1, keepdim=True)
return F.log_softmax(q_values, dim=1), val
class PolicyValueNet():
"""policy-value network """
def __init__(self, board_width, board_height,
model_file=None, use_gpu=False):
self.use_gpu = use_gpu
self.board_width = board_width
self.board_height = board_height
self.l2_const = 1e-4 # coef of l2 penalty
# the policy value net module
if self.use_gpu:
self.policy_value_net = DuelingDQNNet(board_width, board_height).cuda()
else:
self.policy_value_net = DuelingDQNNet(board_width, board_height)
self.optimizer = optim.Adam(self.policy_value_net.parameters(),
weight_decay=self.l2_const)
if model_file:
net_params = torch.load(model_file)
self.policy_value_net.load_state_dict(net_params, strict=False)
def policy_value(self, state_batch):
"""
input: a batch of states
output: a batch of action probabilities and state values
"""
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).cuda())
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.cpu().numpy())
return act_probs, value.data.cpu().numpy()
else:
state_batch = Variable(torch.FloatTensor(state_batch))
log_act_probs, value = self.policy_value_net(state_batch)
act_probs = np.exp(log_act_probs.data.numpy())
return act_probs, value.data.numpy()
def policy_value_fn(self, board):
"""
input: board
output: a list of (action, probability) tuples for each available
action and the score of the board state
"""
legal_positions = board.availables
current_state = np.ascontiguousarray(board.current_state().reshape(
-1, 4, self.board_width, self.board_height))
if self.use_gpu:
log_act_probs, value = self.policy_value_net(
Variable(torch.from_numpy(current_state)).cuda().float())
act_probs = np.exp(log_act_probs.data.cpu().numpy().flatten())
else:
log_act_probs, value = self.policy_value_net(
Variable(torch.from_numpy(current_state)).float())
act_probs = np.exp(log_act_probs.data.numpy().flatten())
act_probs = zip(legal_positions, act_probs[legal_positions])
value = value.data[0][0]
return act_probs, value
def train_step(self, state_batch, mcts_probs, winner_batch, lr):
"""perform a training step"""
# self.use_gpu = True
# wrap in Variable
if self.use_gpu:
state_batch = Variable(torch.FloatTensor(state_batch).cuda())
mcts_probs = Variable(torch.FloatTensor(mcts_probs).cuda())
winner_batch = Variable(torch.FloatTensor(winner_batch).cuda())
else:
state_batch = Variable(torch.FloatTensor(state_batch))
mcts_probs = Variable(torch.FloatTensor(mcts_probs))
winner_batch = Variable(torch.FloatTensor(winner_batch))
# zero the parameter gradients
self.optimizer.zero_grad()
# set learning rate
set_learning_rate(self.optimizer, lr)
# forward
log_act_probs, value = self.policy_value_net(state_batch)
# define the loss = (z - v)^2 - pi^T * log(p) + c||theta||^2
# Note: the L2 penalty is incorporated in optimizer
value_loss = F.mse_loss(value.view(-1), winner_batch)
policy_loss = -torch.mean(torch.sum(mcts_probs*log_act_probs, 1))
loss = value_loss + policy_loss
# backward and optimize
loss.backward()
self.optimizer.step()
# calc policy entropy, for monitoring only
entropy = -torch.mean(
torch.sum(torch.exp(log_act_probs) * log_act_probs, 1)
)
# return loss.data[0], entropy.data[0]
#for pytorch version >= 0.5 please use the following line instead.
return loss.item(), entropy.item()
def get_policy_param(self):
net_params = self.policy_value_net.state_dict()
return net_params
def save_model(self, model_file):
""" save model params to file """
net_params = self.get_policy_param() # get model params
torch.save(net_params, model_file) |