File size: 7,768 Bytes
7d23b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from .zobrist import ZobristCache as Zobrist
from .cache import Cache
from .eval import Evaluate, FIVE
from scipy import signal
import pickle
import os
save_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'train_data/data', 'train_data.pkl')

if 'numpy' not in globals():
    import numpy as np


class Board:
    def __init__(self, size=15, firstRole=1):
        self.size = size
        self.board = [[0] * self.size for _ in range(self.size)]
        self.firstRole = firstRole  # 1 for black, -1 for white
        self.role = firstRole  # 1 for black, -1 for white
        self.history = []
        self.zobrist = Zobrist(self.size)
        self.winnerCache = Cache()
        self.gameoverCache = Cache()
        self.evaluateCache = Cache()
        self.valuableMovesCache = Cache()
        self.evaluateTime = 0
        self.evaluator = Evaluate(self.size)
        self.available = [(i, j) for i in range(self.size) for j in range(self.size)]
        self.patterns = [np.ones((1, 5)), np.ones((5, 1)), np.eye(5), np.fliplr(np.eye(5))]
        self.train_data = {1:[], -1: []}
        if os.path.exists(save_path):
            with open(save_path, 'rb') as f:
                self.train_data = pickle.load(f)

    def isGameOver(self):
        # Checked
        hash = self.hash()
        if self.gameoverCache.get(hash):
            return self.gameoverCache.get(hash)
        if self.getWinner() != 0:
            self.gameoverCache.put(hash, True)
            # save train data
            # with open(save_path, 'wb') as f:
            #     pickle.dump(self.train_data, f)
            return True  # Someone has won
        # Game is over when there is no empty space on the board or someone has won
        if len(self.history) == self.size ** 2:
            self.gameoverCache.put(hash, True)
            return True
        else:
            self.gameoverCache.put(hash, False)
            return False

    def getWinner(self):
        # Checked
        hash = self.hash()
        flag = True
        if self.winnerCache.get(hash):
            return self.winnerCache.get(hash)
        directions = [[1, 0], [0, 1], [1, 1], [1, -1]]  # Horizontal, Vertical, Diagonal
        for i in range(self.size):
            for j in range(self.size):
                if self.board[i][j] == 0:
                    flag = False
                    continue
                for direction in directions:
                    count = 0
                    while (
                            0 <= i + direction[0] * count < self.size and
                            0 <= j + direction[1] * count < self.size and
                            self.board[i + direction[0] * count][j + direction[1] * count] == self.board[i][j]
                    ):
                        count += 1
                    if count >= 5:
                        self.winnerCache.put(hash, self.board[i][j])
                        return self.board[i][j]
        if flag:
            print("tie!!!")
            return 0
        self.winnerCache.put(hash, 0)
        return 0

    def getValidMoves(self):
        return self.available

    def put(self, i, j, role=None):
        # Checked
        if role is None:
            role = self.role
        if not isinstance(i, int) or not isinstance(j, int):
            print("Invalid move: Not Number!", i, j)
            return False
        if self.board[i][j] != 0:
            print("Invalid move!", i, j)
            return False
        self.board[i][j] = role
        self.available.remove((i, j))
        self.history.append({"i": i, "j": j, "role": role})
        self.zobrist.togglePiece(i, j, role)
        self.evaluator.move(i, j, role)
        self.role *= -1  # Switch role
        return True

    def undo(self):
        # Checked
        if len(self.history) == 0:
            print("No moves to undo!")
            return False

        lastMove = self.history.pop()
        self.board[lastMove['i']][lastMove['j']] = 0  # Remove the piece from the board
        self.role = lastMove['role']  # Switch back to the previous player
        self.zobrist.togglePiece(lastMove['i'], lastMove['j'], lastMove['role'])
        self.evaluator.undo(lastMove['i'], lastMove['j'])
        self.available.append((lastMove['i'], lastMove['j']))
        return True

    def position2coordinate(self, position):
        # checked
        row = position // self.size
        col = position % self.size
        return [row, col]

    def coordinate2position(self, coordinate):
        # Checked
        return coordinate[0] * self.size + coordinate[1]

    def getValuableMoves(self, role, depth=0, onlyThree=False, onlyFour=False):
        # Checked
        hash = self.hash()
        prev = self.valuableMovesCache.get(hash)
        if prev:
            if (prev["role"] == role and
                    prev["depth"] == depth and
                    prev["onlyThree"] == onlyThree
                    and prev["onlyFour"] == onlyFour):
                return prev["moves"]

        moves, train_data = self.evaluator.getMoves(role, depth, onlyThree, onlyFour)
        self.train_data[self.role].append(train_data)
        # Handle a special case, if the center point is not occupied, add it by default

        # 开局的时候随机走一步,增加开局的多样性
        if not onlyThree and not onlyFour:
            center = self.size // 2
            if self.board[center][center] == 0:
                moves.append((center, center))

            # x_step = np.random.randint(-self.size // 2, self.size // 2)
            # y_step = np.random.randint(-self.size // 2, self.size // 2)
            # x = center + x_step
            # y = center + y_step
            # if 0 <= x < self.size and 0 <= y < self.size and self.board[x][y] == 0:
            #     moves.append((x, y))

        self.valuableMovesCache.put(hash, {
            "role": role,
            "moves": moves,
            "depth": depth,
            "onlyThree": onlyThree,
            "onlyFour": onlyFour
        })
        return moves

    def display(self, extraPoints=[]):
        # Checked
        extraPosition = [self.coordinate2position(point) for point in extraPoints]
        result = ""
        for i in range(self.size):
            for j in range(self.size):
                position = self.coordinate2position([i, j])
                if position in extraPosition:
                    result += "? "
                    continue
                value = self.board[i][j]
                if value == 1:
                    result += "B " # Black
                elif value == -1:
                    result += "W " # White
                else:
                    result += "- "
            result += "\n"
        return result

    def hash(self):
        # Checked
        return self.zobrist.getHash()  # Return the hash value of the current board, used for caching

    def evaluate(self, role):
        # Checked
        hash_key = self.hash()
        prev = self.evaluateCache.get(hash_key)
        if prev:
            if prev["role"] == role:
                return prev["score"]

        winner = self.getWinner()
        score = 0
        if winner != 0:
            score = FIVE * winner * role
        else:
            score = self.evaluator.evaluate(role)

        self.evaluateCache.put(hash_key, {"role": role, "score": score})
        return score

    def reverse(self):
        # Checked
        new_board = Board(self.size, -self.firstRole)
        for move in self.history:
            x, y, role = move['i'], move['j'], move['role']
            new_board.put(x, y, -role)
        return new_board

    def toString(self):
        # Checked
        return ''.join([''.join(map(str, row)) for row in self.board])