Spaces:
Sleeping
Sleeping
File size: 30,802 Bytes
172a1e4 9cefce7 172a1e4 beb9e09 7d23b62 beb9e09 7d23b62 172a1e4 d97a106 172a1e4 7d23b62 172a1e4 beb9e09 172a1e4 d97a106 ef116e6 fe30159 e7a440c 6b8ff79 d97a106 172a1e4 d97a106 172a1e4 7d23b62 beb9e09 7d23b62 e7a440c 7d23b62 e7a440c 5bb5dc3 172a1e4 beb9e09 172a1e4 9cefce7 172a1e4 beb9e09 e7a440c 7d23b62 beb9e09 e7a440c beb9e09 e7a440c beb9e09 e7a440c beb9e09 e7a440c 172a1e4 e7a440c 172a1e4 beb9e09 e7a440c 172a1e4 beb9e09 d97a106 9cefce7 172a1e4 beb9e09 e7a440c 172a1e4 6b8ff79 172a1e4 7d23b62 172a1e4 beb9e09 5bb5dc3 beb9e09 d97a106 beb9e09 172a1e4 beb9e09 d97a106 172a1e4 7d23b62 beb9e09 7d23b62 aae2a37 172a1e4 beb9e09 5bb5dc3 172a1e4 2f21cdd 172a1e4 7d23b62 beb9e09 172a1e4 2f21cdd e7a440c 172a1e4 ef116e6 172a1e4 7d23b62 172a1e4 7d23b62 d97a106 7d23b62 beb9e09 7d23b62 d97a106 7d23b62 172a1e4 9cefce7 d97a106 9cefce7 d97a106 9cefce7 ef116e6 172a1e4 2f21cdd 7d23b62 beb9e09 172a1e4 7d23b62 172a1e4 7d23b62 beb9e09 172a1e4 6d4d507 e7a440c 6d4d507 2f21cdd 172a1e4 7d23b62 d97a106 7d23b62 d97a106 7d23b62 172a1e4 beb9e09 9cefce7 d97a106 9cefce7 d97a106 9cefce7 172a1e4 2f21cdd 172a1e4 16e10ba d97a106 70d6bef 16e10ba 172a1e4 beb9e09 172a1e4 6b8ff79 172a1e4 beb9e09 172a1e4 beb9e09 172a1e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
"""
FileName: app.py
Author: Benhao Huang
Create Date: 2023/11/19
Description: this file is used to display our project and add visualization elements to the game, using Streamlit
"""
import time
import pandas as pd
from copy import deepcopy
import numpy as np
import streamlit as st
from scipy.signal import convolve # this is used to check if any player wins
from streamlit import session_state
from streamlit_server_state import server_state, server_state_lock
from Gomoku_MCTS import MCTSpure, alphazero, Board, PolicyValueNet_old, PolicyValueNet_new, duel_PolicyValueNet, \
Gumbel_MCTSPlayer
from Gomoku_Bot import Gomoku_bot
from Gomoku_Bot import Board as Gomoku_bot_board
import matplotlib.pyplot as plt
from const import (
_BLACK, # 1, for human
_WHITE, # 2 , for AI
_BLANK,
_PLAYER_COLOR,
_PLAYER_SYMBOL1,
_PLAYER_SYMBOL2,
_ROOM_COLOR,
_VERTICAL,
_NEW,
_HORIZONTAL,
_DIAGONAL_UP_LEFT,
_DIAGONAL_UP_RIGHT,
_BOARD_SIZE,
_MODEL_PATH
)
_PLAYER_SYMBOL = [0, _PLAYER_SYMBOL1, _PLAYER_SYMBOL2]
# '''
# from ai import (
# BOS_TOKEN_ID,
# generate_gpt2,
# load_model,
# )
#
# gpt2 = load_model()
#
# '''
if "FirstPlayer" not in session_state:
session_state.FirstPlayer = _BLACK
session_state.Player = [[], [ _BLACK,_WHITE], [_WHITE,_BLACK]][session_state.FirstPlayer]
session_state.Symbol = _PLAYER_SYMBOL[session_state.FirstPlayer]
# Utils
class Room:
def __init__(self, room_id) -> None:
self.ROOM_ID = room_id
# self.BOARD = np.zeros(shape=(_BOARD_SIZE, _BOARD_SIZE), dtype=int)
self.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5, players=session_state.Player)
self.PLAYER = session_state.FirstPlayer
self.TURN = self.PLAYER
self.HISTORY = (0, 0)
self.WINNER = _BLANK
self.TIME = time.time()
self.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
self.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100),
'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["duel"]).policy_value_fn,
c_puct=5, n_playout=100),
'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100, m_action=8),
'Gomoku Bot': Gomoku_bot(self.gomoku_bot_board, -1)}
self.MCTS = self.MCTS_dict['AlphaZero']
self.last_mcts = self.MCTS
self.AID_MCTS = self.MCTS_dict['AlphaZero']
self.COORDINATE_1D = []
self.current_move = -1
self.ai_simula_time_list = []
self.human_simula_time_list = []
def change_turn(cur):
return cur % 2 + 1
# Initialize the game
if "ROOM" not in session_state:
session_state.ROOM = Room("local")
if "OWNER" not in session_state:
session_state.OWNER = False
if "USE_AIAID" not in session_state:
session_state.USE_AIAID = False
# Check server health
if "ROOMS" not in server_state:
with server_state_lock["ROOMS"]:
server_state.ROOMS = {}
def handle_oppo_model_selection():
if st.session_state['selected_oppo_model'] == 'Gomoku Bot':
session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict['Gomoku Bot']
return
else:
TreeNode = session_state.ROOM.last_mcts.mcts._root
new_mct = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
new_mct.mcts._root = deepcopy(TreeNode)
session_state.ROOM.MCTS = new_mct
session_state.ROOM.last_mcts = new_mct
return
def handle_aid_model_selection():
if st.session_state['selected_aid_model'] == 'None':
session_state.USE_AIAID = False
return
session_state.USE_AIAID = True
TreeNode = session_state.ROOM.MCTS.mcts._root # use the same tree node
new_mct = session_state.ROOM.MCTS_dict[st.session_state['selected_aid_model']]
new_mct.mcts._root = deepcopy(TreeNode)
session_state.ROOM.AID_MCTS = new_mct
return
if 'selected_oppo_model' not in st.session_state:
st.session_state['selected_oppo_model'] = 'AlphaZero' # ้ป่ฎคๅผ
if 'selected_aid_model' not in st.session_state:
st.session_state['selected_aid_model'] = 'AlphaZero' # ้ป่ฎคๅผ
# Layout
TITLE = st.empty()
Model_Switch = st.empty()
TITLE.header("๐ค AI 3603 Gomoku")
selected_oppo_option = Model_Switch.selectbox('Select Opponent Model',
['Pure MCTS', 'AlphaZero', 'Gomoku Bot', 'duel', 'Gumbel AlphaZero'],
index=1, key='oppo_model')
if st.session_state['selected_oppo_model'] != selected_oppo_option:
st.session_state['selected_oppo_model'] = selected_oppo_option
handle_oppo_model_selection()
ROUND_INFO = st.empty()
st.markdown("<br>", unsafe_allow_html=True)
BOARD_PLATE = [
[cell.empty() for cell in st.columns([1 for _ in range(_BOARD_SIZE)])] for _ in range(_BOARD_SIZE)
]
LOG = st.empty()
# Sidebar
SCORE_TAG = st.sidebar.empty()
SCORE_PLATE = st.sidebar.columns(2)
# History scores
SCORE_TAG.subheader("Scores")
PLAY_MODE_INFO = st.sidebar.container()
MULTIPLAYER_TAG = st.sidebar.empty()
with st.sidebar.container():
ANOTHER_ROUND = st.empty()
RESTART = st.empty()
GIVEIN = st.empty()
CHANGE_PLAYER = st.empty()
AIAID = st.empty()
EXIT = st.empty()
selected_aid_option = AIAID.selectbox('Select Assistant Model', ['None', 'Pure MCTS', 'AlphaZero'], index=0,
key='aid_model')
if st.session_state['selected_aid_model'] != selected_aid_option:
st.session_state['selected_aid_model'] = selected_aid_option
handle_aid_model_selection()
GAME_INFO = st.sidebar.container()
message = st.empty()
PLAY_MODE_INFO.write("---\n\n**You are Black, AI agent is White.**")
GAME_INFO.markdown(
"""
---
# <span style="color:black;">Freestyle Gomoku game. ๐ฒ</span>
- FixedModel means you are not allowed to change model during a game
- LeaderBoard is still in development
- no restrictions ๐ซ
- no regrets ๐
Powered by an AlphaZero approach with our own improvements! ๐ For the specific details, please check out our <a href="insert_report_link_here" style="color:blue;">report</a>.
##### Adapted and improved by us! ๐ <a href="https://github.com/Lijiaxin0111/AI_3603_BIGHOME" style="color:blue;">Our Github repo</a>
""",
unsafe_allow_html=True,
)
def restart() -> None:
"""
Restart the game.
"""
session_state.ROOM = Room(session_state.ROOM.ROOM_ID)
st.session_state['selected_oppo_model'] = 'AlphaZero'
def givein() -> None:
"""
Give in to AI.
"""
session_state.ROOM = deepcopy(session_state.ROOM)
session_state.ROOM.WINNER = _WHITE
# add 1 score to AI
session_state.ROOM.HISTORY = (
session_state.ROOM.HISTORY[0]
+ int(session_state.ROOM.WINNER == _WHITE),
session_state.ROOM.HISTORY[1]
+ int(session_state.ROOM.WINNER == _BLACK),
)
session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5)
session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100),
'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["duel"]).policy_value_fn,
c_puct=5, n_playout=100),
'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH[
"Gumbel AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100, m_action=8),
'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)}
session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
session_state.ROOM.last_mcts = session_state.ROOM.MCTS
session_state.ROOM.PLAYER = session_state.ROOM.PLAYER
session_state.ROOM.TURN = session_state.ROOM.PLAYER
session_state.ROOM.WINNER = _BLANK # 0
session_state.ROOM.ai_simula_time_list = []
session_state.ROOM.human_simula_time_list = []
session_state.ROOM.COORDINATE_1D = []
def swap_players() -> None:
session_state.update(
FirstPlayer=change_turn(session_state.FirstPlayer),
)
session_state.update(
Player=[[], [_BLACK, _WHITE], [_WHITE, _BLACK]][session_state.FirstPlayer],
Symbol=_PLAYER_SYMBOL[session_state.FirstPlayer]
)
session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5, players=session_state.Player)
session_state.ROOM.PLAYER = session_state.FirstPlayer
session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100),
'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["duel"]).policy_value_fn,
c_puct=5, n_playout=100),
'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH[
"Gumbel AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100, m_action=8),
'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)}
session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
session_state.ROOM.last_mcts = session_state.ROOM.MCTS
session_state.ROOM.PLAYER = session_state.ROOM.PLAYER
session_state.ROOM.TURN = session_state.ROOM.PLAYER
session_state.ROOM.WINNER = _BLANK # 0
session_state.ROOM.ai_simula_time_list = []
session_state.ROOM.human_simula_time_list = []
session_state.ROOM.COORDINATE_1D = []
RESTART.button(
"Reset",
on_click=restart,
help="Clear the board as well as the scores",
)
GIVEIN.button(
"Give in",
on_click = givein,
help="Give in to AI",
)
CHANGE_PLAYER.button(
"Swap players",
on_click=swap_players,
help="Swap players",
)
# Draw the board
def gomoku():
"""
Draw the board.
Handle the main logic.
"""
# Restart the game
# Continue new round
def another_round() -> None:
"""
Continue new round.
"""
session_state.ROOM = deepcopy(session_state.ROOM)
session_state.ROOM.BOARD = Board(width=_BOARD_SIZE, height=_BOARD_SIZE, n_in_row=5)
session_state.ROOM.gomoku_bot_board = Gomoku_bot_board(_BOARD_SIZE, 1)
session_state.ROOM.MCTS_dict = {'Pure MCTS': MCTSpure(c_puct=5, n_playout=1000),
'AlphaZero': alphazero(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100),
'duel': alphazero(duel_PolicyValueNet(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["duel"]).policy_value_fn,
c_puct=5, n_playout=100),
'Gumbel AlphaZero': Gumbel_MCTSPlayer(PolicyValueNet_new(_BOARD_SIZE, _BOARD_SIZE,
_MODEL_PATH["Gumbel AlphaZero"]).policy_value_fn,
c_puct=5, n_playout=100, m_action=8),
'Gomoku Bot': Gomoku_bot(session_state.ROOM.gomoku_bot_board, -1)}
session_state.ROOM.MCTS = session_state.ROOM.MCTS_dict[st.session_state['selected_oppo_model']]
session_state.ROOM.last_mcts = session_state.ROOM.MCTS
session_state.ROOM.PLAYER = session_state.ROOM.PLAYER
session_state.ROOM.TURN = session_state.ROOM.PLAYER
session_state.ROOM.WINNER = _BLANK # 0
session_state.ROOM.ai_simula_time_list = []
session_state.ROOM.human_simula_time_list = []
session_state.ROOM.COORDINATE_1D = []
# Room status sync
def sync_room() -> bool:
room_id = session_state.ROOM.ROOM_ID
if room_id not in server_state.ROOMS.keys():
session_state.ROOM = Room("local")
return False
elif server_state.ROOMS[room_id].TIME == session_state.ROOM.TIME:
return False
elif server_state.ROOMS[room_id].TIME < session_state.ROOM.TIME:
# Only acquire the lock when writing to the server state
with server_state_lock["ROOMS"]:
server_rooms = server_state.ROOMS
server_rooms[room_id] = session_state.ROOM
server_state.ROOMS = server_rooms
return True
else:
session_state.ROOM = server_state.ROOMS[room_id]
return True
# Check if winner emerge from move
def check_win() -> int:
"""
Use convolution to check if any player wins.
"""
vertical = convolve(
session_state.ROOM.BOARD.board_map,
_VERTICAL,
mode="same",
)
horizontal = convolve(
session_state.ROOM.BOARD.board_map,
_HORIZONTAL,
mode="same",
)
diagonal_up_left = convolve(
session_state.ROOM.BOARD.board_map,
_DIAGONAL_UP_LEFT,
mode="same",
)
diagonal_up_right = convolve(
session_state.ROOM.BOARD.board_map,
_DIAGONAL_UP_RIGHT,
mode="same",
)
if (
np.max(
[
np.max(vertical),
np.max(horizontal),
np.max(diagonal_up_left),
np.max(diagonal_up_right),
]
)
== 5 * _BLACK
):
winner = _BLACK
elif (
np.min(
[
np.min(vertical),
np.min(horizontal),
np.min(diagonal_up_left),
np.min(diagonal_up_right),
]
)
== 5 * _WHITE
):
winner = _WHITE
else:
winner = _BLANK
return winner
# Triggers the board response on click
def handle_click(x, y):
"""
Controls whether to pass on / continue current board / may start new round
"""
if session_state.ROOM.BOARD.board_map[x][y] != _BLANK:
pass
elif (
session_state.ROOM.ROOM_ID in server_state.ROOMS.keys()
and _ROOM_COLOR[session_state.OWNER]
!= server_state.ROOMS[session_state.ROOM.ROOM_ID].TURN
):
sync_room()
# normal play situation
elif session_state.ROOM.WINNER == _BLANK:
# session_state.ROOM = deepcopy(session_state.ROOM)
# print("View of human player: ", session_state.ROOM.BOARD.board_map)
move = session_state.ROOM.BOARD.location_to_move((x, y))
session_state.ROOM.current_move = move
session_state.ROOM.BOARD.do_move(move)
# Gomoku Bot BOARD
session_state.ROOM.MCTS_dict["Gomoku Bot"].board.put(_BOARD_SIZE - move // _BOARD_SIZE - 1,
move % _BOARD_SIZE) # # this move starts from left up corner (0,0), however, the move in the game starts from left bottom corner (0,0)
session_state.ROOM.BOARD.board_map[x][y] = session_state.ROOM.TURN
session_state.ROOM.COORDINATE_1D.append(x * _BOARD_SIZE + y)
session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN)
win, winner = session_state.ROOM.BOARD.game_end()
if win:
session_state.ROOM.WINNER = winner
session_state.ROOM.HISTORY = (
session_state.ROOM.HISTORY[0]
+ int(session_state.ROOM.WINNER == _WHITE),
session_state.ROOM.HISTORY[1]
+ int(session_state.ROOM.WINNER == _BLACK),
)
session_state.ROOM.TIME = time.time()
def forbid_click(x, y):
# st.warning('This posistion has been occupied!!!!', icon="โ ๏ธ")
st.error("({}, {}) has been occupied!!)".format(x, y), icon="๐จ")
# Draw board
def draw_board(response: bool):
"""construct each buttons for all cells of the board"""
if session_state.USE_AIAID and session_state.ROOM.WINNER == _BLANK and session_state.ROOM.TURN == _BLACK:
if session_state.USE_AIAID:
copy_mcts = deepcopy(session_state.ROOM.AID_MCTS.mcts)
_, acts_aid, probs_aid, simul_mean_time_aid = copy_mcts.get_move_probs(session_state.ROOM.BOARD)
sorted_acts_probs = sorted(zip(acts_aid, probs_aid), key=lambda x: x[1], reverse=True)
top_five_acts = [act for act, prob in sorted_acts_probs[:5]]
top_five_probs = [prob for act, prob in sorted_acts_probs[:5]]
if response and session_state.ROOM.TURN == _BLACK: # human turn
start_time = time.time()
print("Your turn")
# construction of clickable buttons
cur_move = (session_state.ROOM.current_move // _BOARD_SIZE, session_state.ROOM.current_move % _BOARD_SIZE)
for i, row in enumerate(session_state.ROOM.BOARD.board_map):
# print("row:", row)
for j, cell in enumerate(row):
if (
i * _BOARD_SIZE + j
in (session_state.ROOM.COORDINATE_1D)
):
if i == cur_move[0] and j == cur_move[1]:
BOARD_PLATE[i][j].button(
session_state.Symbol[_NEW],
key=f"{i}:{j}",
args=(i, j),
on_click=forbid_click,
)
else:
# disable click for GPT choices
BOARD_PLATE[i][j].button(
session_state.Symbol[cell],
key=f"{i}:{j}",
args=(i, j),
on_click=forbid_click
)
else:
if session_state.USE_AIAID and i * _BOARD_SIZE + j in top_five_acts:
# enable click for other cells available for human choices
prob = top_five_probs[top_five_acts.index(i * _BOARD_SIZE + j)]
BOARD_PLATE[i][j].button(
session_state.Symbol[cell] + f"{round(prob, 2)}",
key=f"{i}:{j}",
on_click=handle_click,
args=(i, j),
)
else:
# enable click for other cells available for human choices
BOARD_PLATE[i][j].button(
session_state.Symbol[cell],
key=f"{i}:{j}",
on_click=handle_click,
args=(i, j),
)
end_time = time.time()
print("Time used for human move: ", end_time - start_time)
elif response and session_state.ROOM.TURN == _WHITE: # AI turn
message.empty()
with st.spinner('๐ฎโจ Waiting for AI response... โณ๐'):
time.sleep(0.1)
print("AI's turn")
print("Below are current board under AI's view")
# print(session_state.ROOM.BOARD.board_map)
# move = _BOARD_SIZE * _BOARD_SIZE
# forbid = []
# step = 0.1
# tmp = 0.7
# while move >= _BOARD_SIZE * _BOARD_SIZE or move in session_state.ROOM.COORDINATE_1D:
#
# gpt_predictions = generate_gpt2(
# gpt2,
# torch.tensor(session_state.ROOM.COORDINATE_1D).unsqueeze(0),
# tmp
# )
# print(gpt_predictions)
# move = gpt_predictions[len(session_state.ROOM.COORDINATE_1D)]
# print(move)
# tmp += step
# # if move >= _BOARD_SIZE * _BOARD_SIZE:
# # forbid.append(move)
# # else:
# # break
#
#
# gpt_response = move
# gpt_i, gpt_j = gpt_response // _BOARD_SIZE, gpt_response % _BOARD_SIZE
# print(gpt_i, gpt_j)
# # session_state.ROOM.BOARD[gpt_i][gpt_j] = session_state.ROOM.TURN
#
# simul_time = 0
if st.session_state['selected_oppo_model'] != 'Gomoku Bot':
move, simul_time = session_state.ROOM.MCTS.get_action(session_state.ROOM.BOARD, return_time=True)
else:
move, simul_time = session_state.ROOM.MCTS.get_action(return_time=True)
session_state.ROOM.ai_simula_time_list.append(simul_time)
print("AI takes move: ", move)
session_state.ROOM.current_move = move
gpt_response = move
gpt_i, gpt_j = gpt_response // _BOARD_SIZE, gpt_response % _BOARD_SIZE
print("AI's move is located at ({}, {}) :".format(gpt_i, gpt_j))
move = session_state.ROOM.BOARD.location_to_move((gpt_i, gpt_j))
print("Location to move: ", move)
# print("Location to move: ", move)
# MCTS BOARD
session_state.ROOM.BOARD.do_move(move)
# Gomoku Bot BOARD
session_state.ROOM.MCTS_dict["Gomoku Bot"].board.put(_BOARD_SIZE - 1 - move // _BOARD_SIZE,
move % _BOARD_SIZE)
# session_state.ROOM.BOARD[gpt_i][gpt_j] = session_state.ROOM.TURN
session_state.ROOM.COORDINATE_1D.append(gpt_i * _BOARD_SIZE + gpt_j)
if not session_state.ROOM.BOARD.game_end()[0]:
if session_state.USE_AIAID:
copy_mcts = deepcopy(session_state.ROOM.AID_MCTS.mcts)
_, acts_aid, probs_aid, simul_mean_time_aid = copy_mcts.get_move_probs(session_state.ROOM.BOARD)
sorted_acts_probs = sorted(zip(acts_aid, probs_aid), key=lambda x: x[1], reverse=True)
top_five_acts = [act for act, prob in sorted_acts_probs[:5]]
top_five_probs = [prob for act, prob in sorted_acts_probs[:5]]
else:
top_five_acts = []
top_five_probs = []
# construction of clickable buttons
for i, row in enumerate(session_state.ROOM.BOARD.board_map):
# print("row:", row)
for j, cell in enumerate(row):
if (
i * _BOARD_SIZE + j
in (session_state.ROOM.COORDINATE_1D)
):
if i == gpt_i and j == gpt_j:
BOARD_PLATE[i][j].button(
session_state.Symbol[_NEW],
key=f"{i}:{j}",
args=(i, j),
on_click=handle_click,
)
else:
# disable click for GPT choices
BOARD_PLATE[i][j].button(
session_state.Symbol[cell],
key=f"{i}:{j}",
args=(i, j),
on_click=forbid_click
)
else:
if session_state.USE_AIAID and i * _BOARD_SIZE + j in top_five_acts and not \
session_state.ROOM.BOARD.game_end()[0]:
# enable click for other cells available for human choices
prob = top_five_probs[top_five_acts.index(i * _BOARD_SIZE + j)]
BOARD_PLATE[i][j].button(
session_state.Symbol[cell] + f"{round(prob, 2)}",
key=f"{i}:{j}",
on_click=handle_click,
args=(i, j),
)
else:
# enable click for other cells available for human choices
BOARD_PLATE[i][j].button(
session_state.Symbol[cell],
key=f"{i}:{j}",
on_click=handle_click,
args=(i, j),
)
message.markdown(
'AI agent has calculated its strategy, which takes <span style="color: blue; font-size: 20px;">{:.3e}</span>s per simulation.'.format(
simul_time),
unsafe_allow_html=True
)
LOG.subheader("Logs")
# change turn
session_state.ROOM.TURN = change_turn(session_state.ROOM.TURN)
# session_state.ROOM.WINNER = check_win()
win, winner = session_state.ROOM.BOARD.game_end()
if win:
session_state.ROOM.WINNER = winner
session_state.ROOM.HISTORY = (
session_state.ROOM.HISTORY[0]
+ int(session_state.ROOM.WINNER == _WHITE),
session_state.ROOM.HISTORY[1]
+ int(session_state.ROOM.WINNER == _BLACK),
)
session_state.ROOM.TIME = time.time()
if not response or session_state.ROOM.WINNER != _BLANK:
if session_state.ROOM.WINNER != _BLANK:
print("Game over")
for i, row in enumerate(session_state.ROOM.BOARD.board_map):
for j, cell in enumerate(row):
BOARD_PLATE[i][j].write(
session_state.Symbol[cell],
# key=f"{i}:{j}",
)
# Game process control
def game_control():
if session_state.ROOM.WINNER != _BLANK:
draw_board(False)
else:
draw_board(True)
if session_state.ROOM.WINNER != _BLANK or 0 not in session_state.ROOM.BOARD.board_map:
GIVEIN.empty()
ANOTHER_ROUND.button(
"Play Next round!",
on_click=another_round,
help="Clear board and swap first player",
)
# Infos
def update_info() -> None:
# Additional information
SCORE_PLATE[0].metric("Gomoku-Agent", session_state.ROOM.HISTORY[0])
SCORE_PLATE[1].metric("Human", session_state.ROOM.HISTORY[1])
if session_state.ROOM.WINNER != _BLANK:
st.balloons()
ROUND_INFO.write(
f"#### **{_PLAYER_COLOR[session_state.ROOM.WINNER]} WIN!**\n**Click buttons on the left for more plays.**"
)
# elif 0 not in session_state.ROOM.BOARD.board_map:
# ROUND_INFO.write("#### **Tie**")
# else:
# ROUND_INFO.write(
# f"#### **{_PLAYER_SYMBOL[session_state.ROOM.TURN]} {_PLAYER_COLOR[session_state.ROOM.TURN]}'s turn...**"
# )
# draw the plot for simulation time
# ๅๅปบไธไธช DataFrame
# print(session_state.ROOM.ai_simula_time_list)
st.markdown("<br>", unsafe_allow_html=True)
st.markdown("<br>", unsafe_allow_html=True)
chart_data = pd.DataFrame(session_state.ROOM.ai_simula_time_list, columns=["Simulation Time"])
st.line_chart(chart_data)
game_control()
update_info()
if __name__ == "__main__":
gomoku()
|