File size: 9,270 Bytes
172a1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cefce7
 
 
 
 
 
 
 
172a1e4
 
9cefce7
 
 
172a1e4
9cefce7
 
 
 
172a1e4
 
9cefce7
172a1e4
 
 
 
 
9cefce7
172a1e4
9cefce7
172a1e4
 
9cefce7
 
172a1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cefce7
172a1e4
 
 
 
9cefce7
172a1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cefce7
 
 
172a1e4
9cefce7
 
 
 
 
172a1e4
9cefce7
 
 
 
 
 
172a1e4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# -*- coding: utf-8 -*-
"""
Monte Carlo Tree Search in AlphaGo Zero style, which uses a policy-value
network to guide the tree search and evaluate the leaf nodes

@author: Junxiao Song
"""

import numpy as np
import copy
import time
from concurrent.futures import ThreadPoolExecutor
import threading


def softmax(x):
    probs = np.exp(x - np.max(x))
    probs /= np.sum(probs)
    return probs


class TreeNode(object):
    """A node in the MCTS tree.

    Each node keeps track of its own value Q, prior probability P, and
    its visit-count-adjusted prior score u.
    """

    def __init__(self, parent, prior_p):
        self._parent = parent
        self._children = {}  # a map from action to TreeNode
        self._n_visits = 0
        self._Q = 0
        self._u = 0
        self._P = prior_p

    def expand(self, action_priors):
        """Expand tree by creating new children.
        action_priors: a list of tuples of actions and their prior probability
            according to the policy function.
        """
        for action, prob in action_priors:
            if action not in self._children:
                self._children[action] = TreeNode(self, prob)

    def select(self, c_puct):
        """Select action among children that gives maximum action value Q
        plus bonus u(P).
        Return: A tuple of (action, next_node)
        """
        return max(self._children.items(),
                   key=lambda act_node: act_node[1].get_value(c_puct))

    def update(self, leaf_value):
        """Update node values from leaf evaluation.
        leaf_value: the value of subtree evaluation from the current player's
            perspective.
        """
        # Count visit.
        self._n_visits += 1
        # Update Q, a running average of values for all visits.
        self._Q += 1.0*(leaf_value - self._Q) / self._n_visits

    def update_recursive(self, leaf_value):
        """Like a call to update(), but applied recursively for all ancestors.
        """
        # If it is not root, this node's parent should be updated first.
        if self._parent:
            self._parent.update_recursive(-leaf_value)
        self.update(leaf_value)

    def get_value(self, c_puct):
        """Calculate and return the value for this node.
        It is a combination of leaf evaluations Q, and this node's prior
        adjusted for its visit count, u.
        c_puct: a number in (0, inf) controlling the relative impact of
            value Q, and prior probability P, on this node's score.
        """
        self._u = (c_puct * self._P *
                   np.sqrt(self._parent._n_visits) / (1 + self._n_visits))
        return self._Q + self._u

    def is_leaf(self):
        """Check if leaf node (i.e. no nodes below this have been expanded)."""
        return self._children == {}

    def is_root(self):
        return self._parent is None


class MCTS(object):
    """An implementation of Monte Carlo Tree Search."""

    def __init__(self, policy_value_fn, c_puct=5, n_playout=10000):
        """
        policy_value_fn: a function that takes in a board state and outputs
            a list of (action, probability) tuples and also a score in [-1, 1]
            (i.e. the expected value of the end game score from the current
            player's perspective) for the current player.
        c_puct: a number in (0, inf) that controls how quickly exploration
            converges to the maximum-value policy. A higher value means
            relying on the prior more.
        """
        self._root = TreeNode(None, 1.0)
        self._policy = policy_value_fn
        self._c_puct = c_puct
        self._n_playout = n_playout

    def _playout(self, state, lock=None):
        """Run a single playout from the root to the leaf, getting a value at
        the leaf and propagating it back through its parents.
        State is modified in-place, so a copy must be provided.
        """
        node = self._root
        if lock is not None:
            lock.acquire()
        while(1):
            if node.is_leaf():
                break
            # Greedily select next move.
            action, node = node.select(self._c_puct)
            state.do_move(action)
        if lock is not None:
            lock.release()
        # Evaluate the leaf using a network which outputs a list of
        # (action, probability) tuples p and also a score v in [-1, 1]
        # for the current player.
        action_probs, leaf_value = self._policy(state)
        # Check for end of game.
        end, winner = state.game_end()
        if lock is not None:
            lock.acquire()
        if not end:
            node.expand(action_probs)
        else:
            # for end state,return the "true" leaf_value
            if winner == -1:  # tie
                leaf_value = 0.0
            else:
                leaf_value = (
                    1.0 if winner == state.get_current_player() else -1.0
                )

        # Update value and visit count of nodes in this traversal.
        node.update_recursive(-leaf_value)
        if lock is not None:
            lock.release()

    def get_move_probs(self, state, temp=1e-3):
        """Run all playouts sequentially and return the available actions and
        their corresponding probabilities.
        state: the current game state
        temp: temperature parameter in (0, 1] controls the level of exploration
        """

        start_time_averge = 0

        ### test multi-thread
        # lock = threading.Lock()
        # with ThreadPoolExecutor(max_workers=4) as executor:
        #     for n in range(self._n_playout):
        #         start_time = time.time()

        #         state_copy = copy.deepcopy(state)
        #         executor.submit(self._playout, state_copy, lock)
        #         start_time_averge += (time.time() - start_time)
        ### end test multi-thread

        t = time.time()
        for n in range(self._n_playout):
            start_time = time.time()

            state_copy = copy.deepcopy(state)
            self._playout(state_copy)
            start_time_averge += (time.time() - start_time)
        total_time = time.time() - t
        # print('!!time!!:', time.time() - t)
        
        print(f" My MCTS sum_time: {total_time }, total_simulation: {self._n_playout}")


        # calc the move probabilities based on visit counts at the root node
        act_visits = [(act, node._n_visits)
                      for act, node in self._root._children.items()]
   
        acts, visits = zip(*act_visits)
     
        act_probs = softmax(1.0/temp * np.log(np.array(visits) + 1e-10))


        return 0, acts, act_probs, total_time

    def update_with_move(self, last_move):
        """Step forward in the tree, keeping everything we already know
        about the subtree.
        """
        if last_move in self._root._children:
            self._root = self._root._children[last_move]
            self._root._parent = None
        else:
            self._root = TreeNode(None, 1.0)

    def __str__(self):
        return "MCTS"


class MCTSPlayer(object):
    """AI player based on MCTS"""

    def __init__(self, policy_value_function,
                 c_puct=5, n_playout=2000, is_selfplay=0):
        self.mcts = MCTS(policy_value_function, c_puct, n_playout)
        self._is_selfplay = is_selfplay

    def set_player_ind(self, p):
        self.player = p

    def reset_player(self):
        self.mcts.update_with_move(-1)

    def get_action(self, board, temp=1e-3, return_prob=0,return_time = False):
        sensible_moves = board.availables
        # the pi vector returned by MCTS as in the alphaGo Zero paper
        move_probs = np.zeros(board.width*board.height)
        if len(sensible_moves) > 0:
            _, acts, probs, simul_mean_time = self.mcts.get_move_probs(board, temp)
            move_probs[list(acts)] = probs
            if self._is_selfplay:
                # add Dirichlet Noise for exploration (needed for
                # self-play training)
                move = np.random.choice(
                    acts,
                    p=0.75*probs + 0.25*np.random.dirichlet(0.3*np.ones(len(probs)))
                )
                # update the root node and reuse the search tree
                self.mcts.update_with_move(move)
            else:
                # with the default temp=1e-3, it is almost equivalent
                # to choosing the move with the highest prob
                move = np.random.choice(acts, p=probs)
                # reset the root node
                self.mcts.update_with_move(-1)
#                location = board.move_to_location(move)
#                print("AI move: %d,%d\n" % (location[0], location[1]))
      

            if return_time:

                if return_prob:
                    
                    return move, move_probs,simul_mean_time
                else:
                    return move,simul_mean_time
            else:

                if return_prob:
                    
                    return move, move_probs
                else:
                    return move
        else:
            print("WARNING: the board is full")

    def __str__(self):
        return "MCTS {}".format(self.player)