File size: 2,540 Bytes
3f0f80a
af7afe0
74de454
af7afe0
 
74de454
af7afe0
 
74de454
af7afe0
74de454
 
 
 
 
 
 
 
 
 
 
 
 
af7afe0
74de454
 
 
 
 
 
 
 
52ccc5d
74de454
 
 
 
 
 
 
 
52ccc5d
74de454
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0f80a
 
af7afe0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Загрузка токенизатора и модели
model_name = "GoidaAlignment/GOIDA-0.5B"  # Замените на вашу модель
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model = model.to("cuda" if torch.cuda.is_available() else "cpu")

# Шаблонная функция для форматирования диалога
def apply_chat_template(chat, add_generation_prompt=True):
    formatted_chat = ""
    for message in chat:
        role = message["role"]
        content = message["content"]
        if role == "user":
            formatted_chat += f"User: {content}\n"
        elif role == "assistant":
            formatted_chat += f"Assistant: {content}\n"
    if add_generation_prompt:
        formatted_chat += "Assistant: "
    return formatted_chat

# Функция генерации ответа
def generate_response(user_input, chat_history):
    chat_history.append({"role": "user", "content": user_input})
    formatted_chat = apply_chat_template(chat_history, add_generation_prompt=True)
    
    # Токенизация
    inputs = tokenizer(formatted_chat, return_tensors="pt", add_special_tokens=False)
    inputs = {key: tensor.to(model.device) for key, tensor in inputs.items()}
    
    # Генерация
    outputs = model.generate(
        **inputs,
        max_new_tokens=64,
        temperature=0.7,
        top_p=0.9,
        do_sample=True
    )
    
    # Декодирование
    decoded_output = tokenizer.decode(outputs[0][inputs["input_ids"].size(1):], skip_special_tokens=True)
    chat_history.append({"role": "assistant", "content": decoded_output})
    
    return decoded_output, chat_history

# Интерфейс Gradio
with gr.Blocks() as demo:
    gr.Markdown("# Chatbot на основе модели ГОЙДАААА\nВзаимодействуйте с языковой моделью.")

    chatbot = gr.Chatbot()
    user_input = gr.Textbox(placeholder="Введите ваше сообщение...")
    clear = gr.Button("Очистить чат")

    chat_history = gr.State([])  # Состояние для хранения истории чата

    user_input.submit(
        generate_response,
        [user_input, chat_history],
        [chatbot, chat_history]
    )
    clear.click(lambda: ([], []), None, [chatbot, chat_history])

if __name__ == "__main__":
    demo.launch()