Spaces:
Running
Running
File size: 35,774 Bytes
00cde4f 89956ae 3fe0ce0 89956ae a524b82 89956ae a524b82 89956ae a524b82 89956ae 3fe0ce0 89956ae 3fe0ce0 a524b82 89956ae 3fe0ce0 6bb9fe4 3fe0ce0 6bb9fe4 3fe0ce0 6bb9fe4 3fe0ce0 00cde4f 89956ae 00cde4f 89956ae a524b82 89956ae 00cde4f 3fe0ce0 00cde4f 89956ae a524b82 00cde4f e6e9fac 00cde4f 7af4e33 00cde4f 09cd451 00cde4f 09cd451 00cde4f 286f91d 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 3fe0ce0 00cde4f 286f91d 00cde4f 286f91d 00cde4f 89956ae a524b82 89956ae 3fe0ce0 89956ae 3fe0ce0 89956ae a524b82 89956ae 3fe0ce0 89956ae a524b82 3fe0ce0 89956ae 3fe0ce0 89956ae 3fe0ce0 89956ae 3fe0ce0 89956ae 3fe0ce0 89956ae a524b82 89956ae a524b82 89956ae 3fe0ce0 00cde4f 286f91d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 |
import streamlit as st
import tempfile
import os
import torch
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq, AutoTokenizer, AutoModelForSeq2SeqLM
import librosa
import numpy as np
import ffmpeg
import time
import json
import psutil
st.set_page_config(layout="wide")
# CSS Styling
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600;700&display=swap');
.stApp {
background-color: #ffffff;
font-family: 'Poppins', sans-serif;
color: #1a1a1a;
}
/* Hide Streamlit's default elements */
[data-testid="stToolbar"], [data-testid="stDecoration"], [data-testid="stStatusWidget"] {
display: none;
}
/* Header */
.header {
background: #ffffff;
padding: 1rem 2rem;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
display: flex;
justify-content: space-between;
align-items: center;
position: sticky;
top: 0;
z-index: 100;
}
.logo img {
height: 60px;
width: auto;
}
.navbar {
list-style: none;
display: flex;
gap: 1.5rem;
margin: 0;
}
.navbar li a {
text-decoration: none;
font-size: 28px;
font-weight: bold;
color: #060404;
position: relative;
padding: 10px 15px;
transition: text-shadow 0.3s ease-in-out;
text-shadow: 5px 5px 12px rgba(0, 0, 0, 0.5);
}
.navbar li a:hover {
color: #ff6f61;
}
/* Hero Section */
.hero {
background: linear-gradient(to right, #2b5876, #4e4376);
background-size: cover;
color: #ffffff;
padding: 2rem 2rem;
border-radius: 1rem;
text-align: center;
margin: 2rem 0;
max-height: 200px;
}
.hero h1 {
font-size: 2.5rem;
font-weight: 700;
margin-bottom: 0.5rem;
}
.hero p {
font-size: 1.2rem;
font-weight: 300;
}
/* Feature Section */
.feature-box {
display: flex;
justify-content: center;
gap: 1.5rem;
margin: 3rem 0;
flex-wrap: wrap;
}
.feature {
background: #f8f9fa;
padding: 1.5rem;
border-radius: 1rem;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
width: 200px;
text-align: center;
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.feature:hover {
transform: translateY(-8px) scale(1.03);
box-shadow: 0 12px 24px rgba(0, 0, 0, 0.25);
transition: all 0.3s ease;
border: 1px solid rgba(0, 0, 0, 0.1);
background-color: #fff;
filter: brightness(1.05);
z-index: 10;
}
.feature i {
font-size: 1.5rem;
color: #2196f3;
margin-bottom: 0.5rem;
}
/* Plans Section */
.plans {
padding: 3rem 2rem;
background: #f1f4f8;
border-radius: 1rem;
}
.plan-box {
display: flex;
justify-content: center;
gap: 1.5rem;
flex-wrap: wrap;
}
.plan {
background: #ffffff;
padding: 2rem;
border-radius: 1rem;
width: 250px;
text-align: center;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease, box-shadow 0.3s ease;
border-top: 4px solid #28a745;
height: 290px;
padding-top: 10px;
}
.plan:hover {
transform: translateY(-5px);
box-shadow: 0 6px 15px rgba(0, 0, 0, 0.15);
}
.plan h3 {
font-size: 1.5rem;
margin-bottom: 0.5rem;
}
.plan.free { border-top: 4px solid #28a745; }
.plan.premium { border-top: 4px solid #ff6f61; }
.plan.business { border-top: 4px solid #2196f3; }
/* Buttons */
.stButton>button {
background: linear-gradient(135deg, #ff6f61, #ff8a65) !important;
color: #ffffff !important;
font-weight: 600 !important;
padding: 0.75rem 1.5rem !important;
border-radius: 0.5rem !important;
border: none !important;
transition: transform 0.2s ease, box-shadow 0.2s ease !important;
}
.stButton>button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2) !important;
}
/* File Uploader */
.uploadedFile {
border: 2px dashed #2196f3;
border-radius: 1rem;
padding: 2rem;
background: #f8f9fa;
margin: 2rem 0;
}
/* Progress Bar */
.stProgress > div > div {
background: linear-gradient(90deg, #2196f3, #4fc3f7) !important;
}
/* Text Area */
.stTextArea textarea {
border-radius: 0.5rem;
border: 1px solid #e0e0e0;
padding: 1rem;
font-family: 'Poppins', sans-serif;
}
/* Video player styling */
video {
display: block;
width: 350px !important;
height: 500px !important;
object-fit: contain;
margin: 0 auto;
border: 3px solid #2196f3;
border-radius: 8px;
}
/* Footer */
footer {
background: #1a1a1a;
color: #ffffff;
padding: 3rem 2rem;
margin-top: 3rem;
border-radius: 1rem 1rem 0 0;
}
.footer-container {
display: flex;
justify-content: space-around;
gap: 2rem;
flex-wrap: wrap;
}
.footer-section h4 {
font-size: 1.8rem;
margin-bottom: 1rem;
}
.footer-section ul {
list-style: none;
padding: 0;
}
.footer-section ul li a {
color: #bbbbbb;
text-decoration: none;
font-size: 1.6rem;
transition: color 0.3s ease;
}
.footer-section ul li a:hover {
color: #ff6f61;
}
.footer-bottom {
margin-top: 2rem;
font-size: 0.9rem;
}
/* Responsive Design */
@media (max-width: 768px) {
.header {
flex-direction: column;
gap: 1rem;
}
.navbar {
flex-direction: column;
gap: 0.5rem;
}
.hero h1 {
font-size: 1.8rem;
}
.hero p {
font-size: 1rem;
}
.feature, .plan {
width: 100%;
max-width: 300px;
}
}
</style>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css">
""", unsafe_allow_html=True)
# Function Definitions
def format_time(seconds):
minutes = int(seconds // 60)
secs = int(seconds % 60)
return f"{minutes}:{secs:02d}"
def seconds_to_srt_time(seconds):
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
secs = int(seconds % 60)
millis = int((seconds - int(seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
class TranscriptionProgress:
def __init__(self):
self.progress_bar = None
self.status_text = None
def init_progress(self):
self.progress_bar = st.progress(0.0)
self.status_text = st.empty()
def update(self, progress: float, status: str):
progress = max(0.0, min(1.0, progress))
if self.progress_bar is not None:
self.progress_bar.progress(progress)
if self.status_text is not None:
self.status_text.text(status)
@st.cache_resource
def load_model(language='en', summarizer_type='bart'):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if language == 'ur':
processor = AutoProcessor.from_pretrained("GogetaBlueMUI/whisper-medium-ur-fleurs-v2")
model = AutoModelForSpeechSeq2Seq.from_pretrained("GogetaBlueMUI/whisper-medium-ur-fleurs-v2").to(device)
else:
processor = AutoProcessor.from_pretrained("openai/whisper-small")
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-small").to(device)
if device.type == "cuda":
model = model.half()
if summarizer_type == 'bart':
sum_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
sum_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn").to(device)
else:
sum_tokenizer = AutoTokenizer.from_pretrained("pszemraj/led-large-book-summary")
sum_model = AutoModelForSeq2SeqLM.from_pretrained("pszemraj/led-large-book-summary").to(device)
return processor, model, sum_tokenizer, sum_model, device
def split_audio_into_chunks(audio, sr, chunk_duration):
chunk_samples = int(chunk_duration * sr)
chunks = [audio[start:start + chunk_samples] for start in range(0, len(audio), chunk_samples)]
return chunks
def transcribe_audio(audio, sr, processor, model, device, start_time, language, task="transcribe"):
inputs = processor(audio, sampling_rate=sr, return_tensors="pt")
input_features = inputs.input_features.to(device)
if model.dtype == torch.float16:
input_features = input_features.half()
generate_kwargs = {
"task": task,
"language": "urdu" if language == "ur" else language,
"max_new_tokens": 128,
"return_timestamps": True
}
try:
with torch.no_grad():
outputs = model.generate(input_features, **generate_kwargs)
text = processor.decode(outputs[0], skip_special_tokens=True)
return [(text, start_time, start_time + len(audio) / sr)]
except Exception as e:
st.error(f"Transcription error: {str(e)}")
return [(f"Error: {str(e)}", start_time, start_time + len(audio) / sr)]
def process_chunks(chunks, sr, processor, model, device, language, chunk_duration, task="transcribe", transcript_file="temp_transcript.json"):
transcript = []
chunk_start = 0
total_chunks = len(chunks)
progress_bar = st.progress(0)
status_text = st.empty()
if os.path.exists(transcript_file):
os.remove(transcript_file)
for i, chunk in enumerate(chunks):
status_text.text(f"Processing chunk {i+1}/{total_chunks}...")
try:
memory = psutil.virtual_memory()
st.write(f"Memory usage: {memory.percent}% (Chunk {i+1}/{total_chunks})")
chunk_transcript = transcribe_audio(chunk, sr, processor, model, device, chunk_start, language, task)
transcript.extend(chunk_transcript)
with open(transcript_file, "w", encoding="utf-8") as f:
json.dump(transcript, f, ensure_ascii=False)
chunk_start += chunk_duration
progress_bar.progress((i + 1) / total_chunks)
except Exception as e:
st.error(f"Error processing chunk {i+1}: {str(e)}")
break
status_text.text("Processing complete!")
progress_bar.empty()
return transcript
def summarize_text(text, tokenizer, model, device, summarizer_type='bart'):
if summarizer_type == 'bart':
max_input_length = 1024
max_summary_length = 150
chunk_size = 512
else:
max_input_length = 16384
max_summary_length = 512
chunk_size = 8192
inputs = tokenizer(text, return_tensors="pt", truncation=False)
input_ids = inputs["input_ids"].to(device)
num_tokens = input_ids.shape[1]
st.write(f"Number of tokens in input: {num_tokens}")
if num_tokens < 50:
return "Transcript too short to summarize effectively."
try:
summaries = []
if num_tokens <= max_input_length:
truncated_inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_input_length).to(device)
with torch.no_grad():
summary_ids = model.generate(truncated_inputs["input_ids"], num_beams=4, max_length=max_summary_length, min_length=50, early_stopping=True, temperature=0.7)
summaries.append(tokenizer.decode(summary_ids[0], skip_special_tokens=True))
else:
st.write(f"Transcript exceeds {max_input_length} tokens. Processing in chunks...")
tokens = input_ids[0].tolist()
for i in range(0, num_tokens, chunk_size):
chunk_tokens = tokens[i:i + chunk_size]
chunk_input_ids = torch.tensor([chunk_tokens]).to(device)
with torch.no_grad():
summary_ids = model.generate(chunk_input_ids, num_beams=4, max_length=max_summary_length // 2, min_length=25, early_stopping=True, temperature=0.7)
summaries.append(tokenizer.decode(summary_ids[0], skip_special_tokens=True))
combined_summary = " ".join(summaries)
combined_inputs = tokenizer(combined_summary, return_tensors="pt", truncation=True, max_length=max_input_length).to(device)
with torch.no_grad():
final_summary_ids = model.generate(combined_inputs["input_ids"], num_beams=4, max_length=max_summary_length, min_length=50, early_stopping=True, temperature=0.7)
summaries = [tokenizer.decode(final_summary_ids[0], skip_special_tokens=True)]
return " ".join(summaries)
except Exception as e:
st.error(f"Summarization error: {str(e)}")
return f"Error: {str(e)}"
def save_uploaded_file(uploaded_file):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
tmp_file.write(uploaded_file.read())
return tmp_file.name
except Exception as e:
st.error(f"Error saving uploaded file: {str(e)}")
return None
def merge_intervals(intervals):
if not intervals:
return []
intervals.sort(key=lambda x: x[0])
merged = [intervals[0]]
for current in intervals[1:]:
previous = merged[-1]
if previous[1] >= current[0]:
merged[-1] = (previous[0], max(previous[1], current[1]))
else:
merged.append(current)
return merged
def create_edited_video(video_path, transcript, keep_indices):
try:
intervals_to_keep = [(transcript[i][1], transcript[i][2]) for i in keep_indices]
merged_intervals = merge_intervals(intervals_to_keep)
temp_files = []
for j, (start, end) in enumerate(merged_intervals):
temp_file = f"temp_{j}.mp4"
ffmpeg.input(video_path, ss=start, to=end).output(temp_file, c='copy').run(overwrite_output=True, quiet=True)
temp_files.append(temp_file)
with open("list.txt", "w") as f:
for temp_file in temp_files:
f.write(f"file '{temp_file}'\n")
edited_video_path = "edited_video.mp4"
ffmpeg.input('list.txt', format='concat', safe=0).output(edited_video_path, c='copy').run(overwrite_output=True, quiet=True)
for temp_file in temp_files:
if os.path.exists(temp_file):
os.remove(temp_file)
if os.path.exists("list.txt"):
os.remove("list.txt")
return edited_video_path
except Exception as e:
st.error(f"Error creating edited video: {str(e)}")
return None
def generate_srt(transcript, include_timeframe=True):
srt_content = ""
for text, start, end in transcript:
if include_timeframe:
start_time = seconds_to_srt_time(start)
end_time = seconds_to_srt_time(end)
srt_content += f"{start_time} --> {end_time}\n{text}\n\n"
else:
srt_content += f"{text}\n\n"
return srt_content
# Main Function
def main():
st.markdown("""
<div class="header">
<div class="logo">
<img src="https://i.postimg.cc/wvFfzx5h/VIDEpp.png">
</div>
<ul class="navbar">
<li><a href="#home">Home</a></li>
<li><a href="#upload">Upload Video</a></li>
<li><a href="#about">About Us</a></li>
<li><a href="#contact">Contact Us</a></li>
</ul>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div id="home" class="hero">
<h2>VidEp – Revolutionizing Video Subtitle Editing with AI</h2>
<p>Upload, transcribe, edit subtitles, and summarize videos effortlessly.</p>
</div>
""", unsafe_allow_html=True)
# Initialize session state
if 'app_state' not in st.session_state:
st.session_state['app_state'] = 'upload'
if 'video_path' not in st.session_state:
st.session_state['video_path'] = None
if 'primary_transcript' not in st.session_state:
st.session_state['primary_transcript'] = None
if 'english_transcript' not in st.session_state:
st.session_state['english_transcript'] = None
if 'english_summary' not in st.session_state:
st.session_state['english_summary'] = None
if 'language' not in st.session_state:
st.session_state['language'] = None
if 'language_code' not in st.session_state:
st.session_state['language_code'] = None
if 'translate_to_english' not in st.session_state:
st.session_state['translate_to_english'] = False
if 'summarizer_type' not in st.session_state:
st.session_state['summarizer_type'] = None
if 'summary_generated' not in st.session_state:
st.session_state['summary_generated'] = False
if 'current_time' not in st.session_state:
st.session_state['current_time'] = 0
if 'edited_video_path' not in st.session_state:
st.session_state['edited_video_path'] = None
if 'search_query' not in st.session_state:
st.session_state['search_query'] = ""
if 'show_timeframe' not in st.session_state:
st.session_state['show_timeframe'] = True
if st.session_state['app_state'] == 'upload':
st.markdown("<div id='upload'></div>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center; color: black;'>Upload Your Video</h3>", unsafe_allow_html=True)
with st.form(key="upload_form"):
uploaded_file = st.file_uploader("Choose a video file", type=["mp4"], label_visibility="collapsed")
if st.form_submit_button("Upload") and uploaded_file:
video_path = save_uploaded_file(uploaded_file)
if video_path:
st.session_state['video_path'] = video_path
st.session_state['app_state'] = 'processing'
st.write(f"Uploaded file: {uploaded_file.name}")
st.rerun()
if st.session_state['app_state'] == 'processing':
with st.form(key="processing_form"):
language = st.selectbox("Select language", ["English", "Urdu"], key="language_select")
language_code = "en" if language == "English" else "ur"
st.session_state['language'] = language
st.session_state['language_code'] = language_code
chunk_duration = st.number_input("Duration per chunk (seconds):", min_value=1.0, step=0.1, value=10.0)
if language_code == "ur":
translate_to_english = st.checkbox("Generate English translation", key="translate_checkbox")
st.session_state['translate_to_english'] = translate_to_english
else:
st.session_state['translate_to_english'] = False
if st.form_submit_button("Process"):
with st.spinner("Processing video..."):
start_time = time.time()
try:
st.write("Extracting audio...")
audio_path = "processed_audio.wav"
ffmpeg.input(st.session_state['video_path']).output(audio_path, ac=1, ar=16000).run(overwrite_output=True, quiet=True)
audio, sr = librosa.load(audio_path, sr=16000)
audio = np.nan_to_num(audio, nan=0.0, posinf=0.0, neginf=0.0)
audio_duration = len(audio) / sr
st.write(f"Audio duration: {audio_duration:.2f} seconds")
if audio_duration < 5:
st.error("Audio too short (< 5s). Upload a longer video.")
return
summarizer_type = 'bart' if audio_duration <= 300 else 'led'
st.write(f"Using summarizer: {summarizer_type}")
st.session_state['summarizer_type'] = summarizer_type
st.write("Loading models...")
processor, model, sum_tokenizer, sum_model, device = load_model(language_code, summarizer_type)
st.write("Splitting audio into chunks...")
chunks = split_audio_into_chunks(audio, sr, chunk_duration)
st.write(f"Number of chunks: {len(chunks)}")
st.write("Transcribing audio...")
primary_transcript = process_chunks(chunks, sr, processor, model, device, language_code, chunk_duration, task="transcribe", transcript_file="temp_primary_transcript.json")
english_transcript = None
if st.session_state['translate_to_english'] and language_code == "ur":
st.write("Translating to English...")
processor, model, _, _, device = load_model('en', summarizer_type)
english_transcript = process_chunks(chunks, sr, processor, model, device, 'ur', chunk_duration, task="translate", transcript_file="temp_english_transcript.json")
st.session_state.update({
'primary_transcript': primary_transcript,
'english_transcript': english_transcript,
'summary_generated': False,
'app_state': 'results'
})
st.write("Processing completed successfully!")
st.rerun()
except Exception as e:
st.error(f"Processing failed: {str(e)}")
finally:
if os.path.exists(audio_path):
os.remove(audio_path)
for temp_file in ["temp_primary_transcript.json", "temp_english_transcript.json"]:
if os.path.exists(temp_file):
os.remove(temp_file)
if st.session_state['app_state'] == 'results':
st.markdown('<div style="display: flex; justify-content: center;">', unsafe_allow_html=True)
st.video(st.session_state['video_path'], start_time=st.session_state['current_time'])
st.markdown('</div>', unsafe_allow_html=True)
st.session_state['show_timeframe'] = st.checkbox("Show timeframe in transcript", value=st.session_state['show_timeframe'])
st.markdown("### Search Subtitles")
# Callback to handle search query updates
def update_search_query():
st.session_state['search_query'] = st.session_state.get('search_input', '').lower().strip()
# Text input with on_change callback
st.text_input("Search subtitles...", value=st.session_state['search_query'], key="search_input", on_change=update_search_query)
# Primary Transcript
st.markdown(f"### {st.session_state['language']} Transcript")
primary_matches = 0
for text, start, end in st.session_state['primary_transcript']:
display_text = text.lower() # Case-insensitive comparison
if not st.session_state['search_query'] or st.session_state['search_query'] in display_text:
primary_matches += 1
label = f"[{format_time(start)} - {format_time(end)}] {text}" if st.session_state['show_timeframe'] else text
if st.button(label, key=f"primary_{start}"):
st.session_state['current_time'] = start
st.rerun()
if primary_matches == 0 and st.session_state['search_query']:
st.info("No matches found in primary transcript for the search query.")
# English Transcript
if st.session_state['english_transcript']:
st.markdown("### English Translation")
english_matches = 0
for text, start, end in st.session_state['english_transcript']:
display_text = text.lower() # Case-insensitive comparison
if not st.session_state['search_query'] or st.session_state['search_query'] in display_text:
english_matches += 1
label = f"[{format_time(start)} - {format_time(end)}] {text}" if st.session_state['show_timeframe'] else text
if st.button(label, key=f"english_{start}"):
st.session_state['current_time'] = start
st.rerun()
if english_matches == 0 and st.session_state['search_query']:
st.info("No matches found in English transcript for the search query.")
# Summary Generation
if (st.session_state['language_code'] == 'en' or st.session_state['translate_to_english']) and not st.session_state['summary_generated']:
if st.button("Generate Summary"):
with st.spinner("Generating summary..."):
try:
_, _, sum_tokenizer, sum_model, device = load_model(st.session_state['language_code'], st.session_state['summarizer_type'])
full_text = " ".join([text for text, _, _ in (st.session_state['english_transcript'] or st.session_state['primary_transcript'])])
english_summary = summarize_text(full_text, sum_tokenizer, sum_model, device, st.session_state['summarizer_type'])
st.session_state['english_summary'] = english_summary
st.session_state['summary_generated'] = True
except Exception as e:
st.error(f"Summary generation failed: {str(e)}")
if st.session_state['english_summary'] and st.session_state['summary_generated']:
st.markdown("### Summary")
st.write(st.session_state['english_summary'])
# Download Subtitles
st.markdown("### Download Subtitles")
include_timeframe = st.checkbox("Include timeframe in subtitles", value=True)
transcript_to_download = st.session_state['primary_transcript'] or st.session_state['english_transcript']
if transcript_to_download:
srt_content = generate_srt(transcript_to_download, include_timeframe)
st.download_button(label="Download Subtitles (SRT)", data=srt_content, file_name="subtitles.srt", mime="text/plain")
# Edit Subtitles
st.markdown("### Edit Subtitles")
transcript_to_edit = st.session_state['primary_transcript'] or st.session_state['english_transcript']
if transcript_to_edit and st.button("Delete Subtitles"):
st.session_state['app_state'] = 'editing'
st.rerun()
if st.session_state['app_state'] == 'editing':
st.markdown("### Delete Subtitles")
transcript_to_edit = st.session_state['primary_transcript'] or st.session_state['english_transcript']
for i, (text, start, end) in enumerate(transcript_to_edit):
st.write(f"{i}: [{format_time(start)} - {format_time(end)}] {text}")
indices_input = st.text_input("Enter the indices of subtitles to delete (comma-separated, e.g., 0,1,3):")
if st.button("Confirm Deletion"):
try:
delete_indices = [int(idx.strip()) for idx in indices_input.split(',') if idx.strip()]
delete_indices = [idx for idx in delete_indices if 0 <= idx < len(transcript_to_edit)]
keep_indices = [i for i in range(len(transcript_to_edit)) if i not in delete_indices]
if not keep_indices:
st.error("All subtitles are deleted. No video to generate.")
else:
edited_video_path = create_edited_video(st.session_state['video_path'], transcript_to_edit, keep_indices)
if edited_video_path:
st.session_state['edited_video_path'] = edited_video_path
st.session_state['app_state'] = 'results'
st.rerun()
except ValueError:
st.error("Invalid input. Please enter comma-separated integers.")
except Exception as e:
st.error(f"Error during video editing: {str(e)}")
if st.button("Cancel Deletion"):
st.session_state['app_state'] = 'results'
st.rerun()
if st.session_state['app_state'] == 'results' and st.session_state['edited_video_path']:
st.markdown("### Edited Video")
st.markdown('<div style="display: flex; justify-content: center;">', unsafe_allow_html=True)
st.video(st.session_state['edited_video_path'])
st.markdown('</div>', unsafe_allow_html=True)
with open(st.session_state['edited_video_path'], "rb") as file:
st.download_button(label="Download Edited Video", data=file, file_name="edited_video.mp4", mime="video/mp4")
if st.session_state.get('video_path') and st.button("Reset"):
if st.session_state['video_path'] and os.path.exists(st.session_state['video_path']):
os.remove(st.session_state['video_path'])
if st.session_state['edited_video_path'] and os.path.exists(st.session_state['edited_video_path']):
os.remove(st.session_state['edited_video_path'])
st.session_state.clear()
st.rerun()
st.markdown("""
<div style='text-align: center;'>
<h2 style='color: black'>Why VidEp Stands Out</h2>
</div>
<div class="feature-box">
<div class="feature"><i class="fas fa-cloud-upload-alt"></i><br>Cloud Upload</div>
<div class="feature"><i class="fas fa-search"></i><br>Smart Search</div>
<div class="feature"><i class="fas fa-edit"></i><br>Easy Editing</div>
<div class="feature"><i class="fas fa-file-alt"></i><br>AI Summary</div>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div id="about" class="about-section" style="padding: 3rem 2rem; background: #f8f9fa; border-radius: 1rem; margin: 2rem 0;">
<h2 style="text-align: center; color: black; margin-bottom: 2rem;">About VidEp</h2>
<div style="display: flex; align-items: center; gap: 2rem; flex-wrap: wrap;">
<div style="flex: 1; min-width: 300px;">
<img src="https://i.postimg.cc/g0z3WVgT/about.jpg" style="width: 100%; height: auto; border-radius: 1rem;" alt="About VidEp">
</div>
<div style="flex: 2; min-width: 300px;">
<h3 style="color:grey;">Our Mission</h3>
<p>VidEp aims to revolutionize how creators and professionals work with video content by providing state-of-the-art AI-powered tools for transcription, translation, and summarization.</p>
<h3 style="color:grey;">What We Do</h3>
<p>Our platform combines the latest advancements in speech recognition and natural language processing to automatically transcribe videos in multiple languages, generate accurate translations, and create concise summaries of content.</p>
<h3 style="color:grey;">Why Choose Us</h3>
<ul>
<li>Advanced AI models for superior accuracy</li>
<li>Multi-language support including English and Urdu</li>
<li>Easy-to-use interface for editing and managing subtitles</li>
<li>Smart search functionality to quickly find content</li>
<li>Seamless video editing based on transcripts</li>
</ul>
</div>
</div>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div id="contact" class="contact-section" style="padding: 3rem 2rem; background: #f1f4f8; border-radius: 1rem; margin: 2rem 0;">
<h2 style="text-align: center; color: black; margin-bottom: 2rem;">Contact Us</h2>
<div style="max-width: 600px; margin: 0 auto;">
<div style="margin-bottom: 1rem;">
<label for="email" style="display: block; margin-bottom: 0.5rem; font-weight: 500;">Email</label>
<input type="email" id="email" placeholder="Your email address" style="width: 100%; padding: 0.75rem; border-radius: 0.5rem; border: 1px solid #e0e0e0;">
</div>
<div style="margin-bottom: 1rem;">
<label for="message" style="display: block; margin-bottom: 0.5rem; font-weight: 500;">Message</label>
<textarea id="message" rows="5" placeholder="Your message" style="width: 100%; padding: 0.75rem; border-radius: 0.5rem; border: 1px solid #e0e0e0;"></textarea>
</div>
<button onclick="alert('Message sent successfully!')" style="background: linear-gradient(135deg, #ff6f61, #ff8a65); color: white; font-weight: 600; padding: 0.75rem 1.5rem; border-radius: 0.5rem; border: none; cursor: pointer; width: 100%;">Send Message</button>
</div>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<div class="plans">
<h2 style="text-align: center; margin-bottom: 2rem; color: black;">Choose Your Plan</h2>
<div class="plan-box">
<div class="plan free" style="background: linear-gradient(135deg, #299f45, #185726); padding-bottom: 0px">
<h3 style="color: white;">Free</h3>
<p><strong>$0</strong> / month</p>
<p>Basic video transcription</p>
<p>English only</p>
<p>Max 5 minutes video</p>
<p>No summarization</p>
</div>
<div class="plan premium" style="background-color:#a32b2d">
<h3 style="color: white;">Premium</h3>
<p><strong>$19</strong> / month</p>
<p>Advanced transcription</p>
<p>Multiple languages</p>
<p>Max 30 minutes video</p>
<p>AI summarization</p>
</div>
<div class="plan business" style="background-color:#396ca3">
<h3 style="color: white;">Business</h3>
<p><strong>$49</strong> / month</p>
<p>Enterprise-grade transcription</p>
<p>All languages</p>
<p>Unlimited video length</p>
</div>
</div>
</div>
""", unsafe_allow_html=True)
st.markdown("""
<footer>
<div class="footer-container">
<div class="footer-section">
<h4 style="margin-left:20px">Company Info</h4>
<ul>
<li><a href="#about-us">About Us</a></li>
<li><a href="#privacy">Privacy Policy</a></li>
<li><a href="#terms">Terms</a></li>
</ul>
</div>
<div class="footer-section">
<h4 style="margin-left:20px">Links</h4>
<ul>
<li><a href="#home">Home</a></li>
<li><a href="#upload">Upload</a></li>
<li><a href="#about">About</a></li>
<li><a href="#contact">Contact</a></li>
</ul>
</div>
<div class="footer-section">
<h4 style="margin-left:20px">Legal</h4>
<ul>
<li><a href="#">Terms of Service</a></li>
<li><a href="#">Privacy Policy</a></li>
<li><a href="#">Cookie Policy</a></li>
</ul>
</div>
</div>
<div class="footer-bottom" style="justify-content: center; text-align: center; border-top: 1px solid white; padding-top:20px; padding-bottom: 10px;">
<p style="font-size: 20px">© 2025 VidEp. All rights reserved.</p>
</div>
</footer>
<script>
document.addEventListener('DOMContentLoaded', function() {
const navLinks = document.querySelectorAll('.navbar a');
navLinks.forEach(link => {
link.addEventListener('click', function(e) {
e.preventDefault();
const targetId = this.getAttribute('href');
const targetElement = document.querySelector(targetId);
if (targetElement) {
targetElement.scrollIntoView({behavior: 'smooth'});
}
});
});
});
</script>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |