Spaces:
Runtime error
Runtime error
import torch | |
import streamlit as st | |
from extractive_summarizer.model_processors import Summarizer | |
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config | |
def abstractive_summarizer(text : str, model): | |
tokenizer = T5Tokenizer.from_pretrained('t5-large') | |
device = torch.device('cpu') | |
preprocess_text = text.strip().replace("\n", "") | |
t5_prepared_text = "summarize: " + preprocess_text | |
tokenized_text = tokenizer.encode(t5_prepared_text, return_tensors="pt").to(device) | |
# summmarize | |
summary_ids = abs_model.generate(tokenized_text, | |
num_beams=4, | |
no_repeat_ngram_size=2, | |
min_length=30, | |
max_length=100, | |
early_stopping=True) | |
abs_summarized_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return abs_summarized_text | |
def load_ext_model(): | |
model = Summarizer() | |
return model | |
def load_abs_model(): | |
model = T5ForConditionalGeneration.from_pretrained('t5-large') | |
return model | |
if __name__ == "__main__": | |
# --------------------------------- | |
# Main Application | |
# --------------------------------- | |
st.title("Text Summarizer π") | |
summarize_type = st.sidebar.selectbox("Summarization type", options=["Extractive", "Abstractive"]) | |
inp_text = st.text_input("Enter the text here") | |
# view summarized text (expander) | |
with st.expander("View input text"): | |
st.write(inp_text) | |
summarize = st.button("Summarize") | |
# called on toggle button [summarize] | |
if summarize: | |
if summarize_type == "Extractive": | |
# extractive summarizer | |
ext_model = load_ext_model() | |
summarized_text = ext_model(inp_text, num_sentences=5) | |
elif summarize_type == "Abstractive": | |
abs_model = load_abs_model() | |
summarized_text = abstractive_summarizer(inp_text, model=abs_model) | |
# final summarized output | |
st.subheader("Summarized text") | |
st.info(summarized_text) | |