Spaces:
Runtime error
Runtime error
import torch | |
import nltk | |
import validators | |
import streamlit as st | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
# local modules | |
from extractive_summarizer.model_processors import Summarizer | |
from src.utils import clean_text, fetch_article_text | |
from src.abstractive_summarizer import ( | |
abstractive_summarizer, | |
preprocess_text_for_abstractive_summarization, | |
) | |
# abstractive summarizer model | |
def load_abs_model(): | |
tokenizer = T5Tokenizer.from_pretrained("t5-base") | |
model = T5ForConditionalGeneration.from_pretrained("t5-base") | |
return tokenizer, model | |
if __name__ == "__main__": | |
# --------------------------------- | |
# Main Application | |
# --------------------------------- | |
st.title("Text Summarizer π") | |
summarize_type = st.sidebar.selectbox( | |
"Summarization type", options=["Extractive", "Abstractive"] | |
) | |
nltk.download("punkt") | |
inp_text = st.text_input("Enter text or a url here") | |
is_url = validators.url(inp_text) | |
if is_url: | |
# complete text, chunks to summarize (list of sentences for long docs) | |
text, clean_txt = fetch_article_text(url=inp_text) | |
else: | |
clean_txt = clean_text(inp_text) | |
# view summarized text (expander) | |
with st.expander("View input text"): | |
if is_url: | |
st.write(clean_txt[0]) | |
else: | |
st.write(clean_txt) | |
summarize = st.button("Summarize") | |
# called on toggle button [summarize] | |
if summarize: | |
if summarize_type == "Extractive": | |
if is_url: | |
text_to_summarize = " ".join([txt for txt in clean_txt]) | |
# extractive summarizer | |
with st.spinner( | |
text="Creating extractive summary. This might take a few seconds ..." | |
): | |
ext_model = Summarizer() | |
summarized_text = ext_model(text_to_summarize, num_sentences=6) | |
elif summarize_type == "Abstractive": | |
with st.spinner( | |
text="Creating abstractive summary. This might take a few seconds ..." | |
): | |
text_to_summarize = clean_txt | |
abs_tokenizer, abs_model = load_abs_model() | |
if not is_url: | |
# list of chunks | |
text_to_summarize = preprocess_text_for_abstractive_summarization( | |
tokenizer=abs_tokenizer, text=clean_txt | |
) | |
summarized_text = abstractive_summarizer( | |
abs_tokenizer, abs_model, text_to_summarize | |
) | |
# abs_tokenizer, abs_model = load_abs_model() | |
# summarized_text = abstractive_summarizer( | |
# abs_tokenizer, abs_model, text_to_summarize | |
# ) | |
# elif summarize_type == "Abstractive" and is_url: | |
# abs_url_summarizer = pipeline("summarization") | |
# tmp_sum = abs_url_summarizer( | |
# text_to_summarize, max_length=120, min_length=30, do_sample=False | |
# ) | |
# summarized_text = " ".join([summ["summary_text"] for summ in tmp_sum]) | |
# final summarized output | |
st.subheader("Summarized text") | |
st.info(summarized_text) | |